将流水线应用程序映射到异构嵌入式系统:基于贝叶斯优化算法的方法

Antonino Tumeo, Marco Branca, L. Camerini, C. Pilato, P. Lanzi, Fabrizio Ferrandi, D. Sciuto
{"title":"将流水线应用程序映射到异构嵌入式系统:基于贝叶斯优化算法的方法","authors":"Antonino Tumeo, Marco Branca, L. Camerini, C. Pilato, P. Lanzi, Fabrizio Ferrandi, D. Sciuto","doi":"10.1145/1629435.1629495","DOIUrl":null,"url":null,"abstract":"In this paper we propose a flow based on the Bayesian Optimization Algorithm (BOA) for mapping pipelined applications on a heterogeneous multiprocessor platform on Field Programmable Gate Array (FPGA) with customizable processors. BOA is a Probabilistic Model Building Genetic Algorithm (PMBGA) that, substituting the classical mutation and crossover operators with the construction and the sampling of a Bayesian network, is able to identify correlated sub-structures within the problem to be maintained while generating new solutions.\n The paper introduces the model adopted for pipelined applications and then shows why BOA fits the problem better than other search algorithms, like Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS). We also show that our algorithm is able to cope with data parallel pipelined algorithms. We finally validate our flow on realistic applications like JPEG and ADPCM coding by executing the resulting mapping on our platform.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"601 1-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mapping pipelined applications onto heterogeneous embedded systems: a bayesian optimization algorithm based approach\",\"authors\":\"Antonino Tumeo, Marco Branca, L. Camerini, C. Pilato, P. Lanzi, Fabrizio Ferrandi, D. Sciuto\",\"doi\":\"10.1145/1629435.1629495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a flow based on the Bayesian Optimization Algorithm (BOA) for mapping pipelined applications on a heterogeneous multiprocessor platform on Field Programmable Gate Array (FPGA) with customizable processors. BOA is a Probabilistic Model Building Genetic Algorithm (PMBGA) that, substituting the classical mutation and crossover operators with the construction and the sampling of a Bayesian network, is able to identify correlated sub-structures within the problem to be maintained while generating new solutions.\\n The paper introduces the model adopted for pipelined applications and then shows why BOA fits the problem better than other search algorithms, like Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS). We also show that our algorithm is able to cope with data parallel pipelined algorithms. We finally validate our flow on realistic applications like JPEG and ADPCM coding by executing the resulting mapping on our platform.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":\"601 1-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629435.1629495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629435.1629495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于贝叶斯优化算法(BOA)的流程,用于在具有可定制处理器的现场可编程门阵列(FPGA)的异构多处理器平台上映射流水线应用程序。BOA是一种概率模型构建遗传算法(PMBGA),它用贝叶斯网络的构建和采样取代了经典的突变和交叉算子,能够识别待维护问题中的相关子结构,同时生成新的解决方案。本文介绍了流水线应用所采用的模型,然后说明了为什么BOA比遗传算法(GA)、模拟退火算法(SA)和禁忌搜索(TS)等其他搜索算法更适合问题。我们还证明了我们的算法能够处理数据并行流水线算法。通过在我们的平台上执行结果映射,我们最终在实际应用程序(如JPEG和ADPCM编码)上验证了我们的流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping pipelined applications onto heterogeneous embedded systems: a bayesian optimization algorithm based approach
In this paper we propose a flow based on the Bayesian Optimization Algorithm (BOA) for mapping pipelined applications on a heterogeneous multiprocessor platform on Field Programmable Gate Array (FPGA) with customizable processors. BOA is a Probabilistic Model Building Genetic Algorithm (PMBGA) that, substituting the classical mutation and crossover operators with the construction and the sampling of a Bayesian network, is able to identify correlated sub-structures within the problem to be maintained while generating new solutions. The paper introduces the model adopted for pipelined applications and then shows why BOA fits the problem better than other search algorithms, like Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS). We also show that our algorithm is able to cope with data parallel pipelined algorithms. We finally validate our flow on realistic applications like JPEG and ADPCM coding by executing the resulting mapping on our platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Furion: alleviating overheads for deep learning framework on single machine (work-in-progress) A chip-level security framework for assessing sensor data integrity: work-in-progress Dynamic data management for automotive ECUs with hybrid RAM-NVM memory: work-in-progress An on-chip interconnect and protocol stack for multiple communication paradigms and programming models Efficient dynamic voltage/frequency scaling through algorithmic loop transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1