寿命数据分析在飞机建模中的应用

J. Pulido, J. Klinger, W. Hill
{"title":"寿命数据分析在飞机建模中的应用","authors":"J. Pulido, J. Klinger, W. Hill","doi":"10.1109/RAM.2017.7889690","DOIUrl":null,"url":null,"abstract":"As demand for highly reliable complex systems increases, engineers are being forced to consider the risk implications of design decisions earlier in the conceptual phase of projects and with greater accuracy. Standard probabilistic risk assessments (PRA) usually employed to verify that a product meets requirements are too resource intensive and too slow to keep up with the speed at which the design is maturing; while classical qualitative methods do not provide the level of detail and granularity required by the designers to make high-quality risk informed decisions. Every company is dependent on some type of asset that keeps the business in business — be it a computer, a centrifuge or a megawatt transformer. In a large enterprise, reducing costs related to asset maintenance, repair and ultimate replacement is at the top of management concerns [1]. Downtime in any network, manufacturing or computer system ultimately results not only in high repair costs, but in customer dissatisfaction and lower potential sales. In response to these concerns, this paper presents a methodology for using Life Data Analysis (LDA) techniques for evaluating new product innovation and projecting product performance due to several failure modes. The paper presents an application for the airline industry where the technique was used in determining the right failure mode as well as enable the program to compare improvements to the fleet.","PeriodicalId":138871,"journal":{"name":"2017 Annual Reliability and Maintainability Symposium (RAMS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Life data analysis with applications to aircraft modeling\",\"authors\":\"J. Pulido, J. Klinger, W. Hill\",\"doi\":\"10.1109/RAM.2017.7889690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As demand for highly reliable complex systems increases, engineers are being forced to consider the risk implications of design decisions earlier in the conceptual phase of projects and with greater accuracy. Standard probabilistic risk assessments (PRA) usually employed to verify that a product meets requirements are too resource intensive and too slow to keep up with the speed at which the design is maturing; while classical qualitative methods do not provide the level of detail and granularity required by the designers to make high-quality risk informed decisions. Every company is dependent on some type of asset that keeps the business in business — be it a computer, a centrifuge or a megawatt transformer. In a large enterprise, reducing costs related to asset maintenance, repair and ultimate replacement is at the top of management concerns [1]. Downtime in any network, manufacturing or computer system ultimately results not only in high repair costs, but in customer dissatisfaction and lower potential sales. In response to these concerns, this paper presents a methodology for using Life Data Analysis (LDA) techniques for evaluating new product innovation and projecting product performance due to several failure modes. The paper presents an application for the airline industry where the technique was used in determining the right failure mode as well as enable the program to compare improvements to the fleet.\",\"PeriodicalId\":138871,\"journal\":{\"name\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAM.2017.7889690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2017.7889690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着对高度可靠的复杂系统需求的增加,工程师们被迫在项目的概念阶段更早地考虑设计决策的风险含义,并且更加准确。通常用于验证产品是否满足要求的标准概率风险评估(PRA)过于资源密集,速度太慢,无法跟上设计成熟的速度;而经典的定性方法并不能提供设计师做出高质量风险决策所需的细节和粒度。每家公司都依赖某种资产来维持业务——无论是计算机、离心机还是兆瓦级变压器。在大型企业中,降低与资产维护、维修和最终更换相关的成本是管理层最关心的问题。任何网络、制造或计算机系统的停机时间最终不仅会导致高昂的维修成本,还会导致客户不满和潜在销售额下降。针对这些问题,本文提出了一种使用寿命数据分析(LDA)技术来评估新产品创新和由于几种失效模式而预测产品性能的方法。本文介绍了航空业的应用,其中该技术用于确定正确的故障模式,并使该程序能够与机队进行比较改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life data analysis with applications to aircraft modeling
As demand for highly reliable complex systems increases, engineers are being forced to consider the risk implications of design decisions earlier in the conceptual phase of projects and with greater accuracy. Standard probabilistic risk assessments (PRA) usually employed to verify that a product meets requirements are too resource intensive and too slow to keep up with the speed at which the design is maturing; while classical qualitative methods do not provide the level of detail and granularity required by the designers to make high-quality risk informed decisions. Every company is dependent on some type of asset that keeps the business in business — be it a computer, a centrifuge or a megawatt transformer. In a large enterprise, reducing costs related to asset maintenance, repair and ultimate replacement is at the top of management concerns [1]. Downtime in any network, manufacturing or computer system ultimately results not only in high repair costs, but in customer dissatisfaction and lower potential sales. In response to these concerns, this paper presents a methodology for using Life Data Analysis (LDA) techniques for evaluating new product innovation and projecting product performance due to several failure modes. The paper presents an application for the airline industry where the technique was used in determining the right failure mode as well as enable the program to compare improvements to the fleet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliability study on high-k bi-layer dielectrics Contracting for system availability under fleet expansion: Redundancy allocation or spares inventory? Risk modeling of variable probability external initiating events Human reliability assessments: Using the past (Shuttle) to predict the future (Orion) Uniform analysis of fault trees through model transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1