基于物理的仅使用热图像的声波红外裂纹长度估计

B. Abu-Nabah, S. Al-Said
{"title":"基于物理的仅使用热图像的声波红外裂纹长度估计","authors":"B. Abu-Nabah, S. Al-Said","doi":"10.1115/qnde2022-98191","DOIUrl":null,"url":null,"abstract":"\n The absence of analytical solutions describing a crack frictional heat generation and diffusion in sonic infrared (IR) inspection technology makes it rather difficult to estimate a crack length from thermal images alone. This study presents the recent development in theoretical-based techniques assuming uniform, arbitrary and point frictional heat generation functions along the crack and how they lend themselves for crack length estimation. The different forward heat diffusion models are validated in close comparison with finite element (FE) simulations for different heat generation functions. Moreover, the capability in retrieving a crack arbitrary heat generation function and estimating a crack length from simulated thermal images alone is validated with and without the virtual addition of thermal noise. It demonstrates the benefits of applying the principle of superposition of predefined heat generation functions due to the linearity in the governing heat diffusion model while retrieving the heat generation function from thermal images. Targeting a peak temperature change between 0.2 and 1.6 K with the addition of different random noise levels for different crack lengths can deliver up to 20% uncertainty in crack length estimation at 95% confidence level. The application of the proposed point heat generation function along the crack underestimated a crack length by 10% over independently measured sonic IR thermal images. This illustrates the benefits and potential capabilities from advancing this approach in the future.","PeriodicalId":276311,"journal":{"name":"2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation","volume":"13 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Based Sonic IR Crack Length Estimation using Thermal Images Alone\",\"authors\":\"B. Abu-Nabah, S. Al-Said\",\"doi\":\"10.1115/qnde2022-98191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The absence of analytical solutions describing a crack frictional heat generation and diffusion in sonic infrared (IR) inspection technology makes it rather difficult to estimate a crack length from thermal images alone. This study presents the recent development in theoretical-based techniques assuming uniform, arbitrary and point frictional heat generation functions along the crack and how they lend themselves for crack length estimation. The different forward heat diffusion models are validated in close comparison with finite element (FE) simulations for different heat generation functions. Moreover, the capability in retrieving a crack arbitrary heat generation function and estimating a crack length from simulated thermal images alone is validated with and without the virtual addition of thermal noise. It demonstrates the benefits of applying the principle of superposition of predefined heat generation functions due to the linearity in the governing heat diffusion model while retrieving the heat generation function from thermal images. Targeting a peak temperature change between 0.2 and 1.6 K with the addition of different random noise levels for different crack lengths can deliver up to 20% uncertainty in crack length estimation at 95% confidence level. The application of the proposed point heat generation function along the crack underestimated a crack length by 10% over independently measured sonic IR thermal images. This illustrates the benefits and potential capabilities from advancing this approach in the future.\",\"PeriodicalId\":276311,\"journal\":{\"name\":\"2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation\",\"volume\":\"13 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/qnde2022-98191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/qnde2022-98191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

声波红外(IR)检测技术缺乏描述裂纹摩擦热产生和扩散的解析解,这使得仅从热图像估计裂纹长度变得相当困难。本研究介绍了基于理论的技术的最新发展,假设沿裂纹均匀,任意和点摩擦产热函数,以及它们如何适用于裂纹长度估计。通过对不同产热函数的有限元模拟,验证了不同正向热扩散模型的有效性。此外,在有和没有虚拟热噪声的情况下,验证了仅从模拟热图像中检索裂纹任意热生成函数和估计裂纹长度的能力。它证明了在从热图像中检索热生成函数时,由于控制热扩散模型的线性,应用预先定义的热生成函数的叠加原理的好处。以温度峰值变化在0.2 - 1.6 K之间为目标,加上不同裂纹长度的不同随机噪声水平,在95%的置信度下,裂纹长度估计的不确定性高达20%。与独立测量的声波红外热图像相比,应用所提出的沿裂纹点产热函数低估了裂纹长度10%。这说明了在未来推进这种方法的好处和潜在能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics-Based Sonic IR Crack Length Estimation using Thermal Images Alone
The absence of analytical solutions describing a crack frictional heat generation and diffusion in sonic infrared (IR) inspection technology makes it rather difficult to estimate a crack length from thermal images alone. This study presents the recent development in theoretical-based techniques assuming uniform, arbitrary and point frictional heat generation functions along the crack and how they lend themselves for crack length estimation. The different forward heat diffusion models are validated in close comparison with finite element (FE) simulations for different heat generation functions. Moreover, the capability in retrieving a crack arbitrary heat generation function and estimating a crack length from simulated thermal images alone is validated with and without the virtual addition of thermal noise. It demonstrates the benefits of applying the principle of superposition of predefined heat generation functions due to the linearity in the governing heat diffusion model while retrieving the heat generation function from thermal images. Targeting a peak temperature change between 0.2 and 1.6 K with the addition of different random noise levels for different crack lengths can deliver up to 20% uncertainty in crack length estimation at 95% confidence level. The application of the proposed point heat generation function along the crack underestimated a crack length by 10% over independently measured sonic IR thermal images. This illustrates the benefits and potential capabilities from advancing this approach in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Generic Numerical Solver for Modeling the Influence of Stress Conditions on Guided Wave Propagation for SHM Applications Application of Temperature Compensation Strategies for Ultrasonic Guided Waves to Distributed Sensor Networks Validation of Numerical Wavefield Modelling and Damage Interaction in Complex Composite Structures Using Data from Open Guided Waves High-Resolution Thickness Mapping with Deepfit and Lamb Guided Waves A Study on the Influence of Wave Scattering in Metamaterial-Based Super-Resolution Imaging of Defects in Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1