电子商务推荐系统中的扁平和分层用户配置文件聚类

Sara Ouaftouh, Imad Sassi, A. Zellou, S. Anter
{"title":"电子商务推荐系统中的扁平和分层用户配置文件聚类","authors":"Sara Ouaftouh, Imad Sassi, A. Zellou, S. Anter","doi":"10.1109/ICSSD47982.2019.9002690","DOIUrl":null,"url":null,"abstract":"Recommender systems are more and more used in different domains of computer science. The collaborative filtering remains a highly prized recommendation technique used by the e-services on the internet. This technique is mainly based on deducing a part of the user interests from the preferences of other users with similar profiles. Among the different approaches, the clustering technique is used to implement collaborative filtering. We propose in this work a comparison between hierarchical and flat user profile clustering based on a case study. The proposed approach is implemented basing on a dataset of user profiles in an e-commerce context.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Flat and hierarchical user profile clustering in an e-commerce recommender system\",\"authors\":\"Sara Ouaftouh, Imad Sassi, A. Zellou, S. Anter\",\"doi\":\"10.1109/ICSSD47982.2019.9002690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems are more and more used in different domains of computer science. The collaborative filtering remains a highly prized recommendation technique used by the e-services on the internet. This technique is mainly based on deducing a part of the user interests from the preferences of other users with similar profiles. Among the different approaches, the clustering technique is used to implement collaborative filtering. We propose in this work a comparison between hierarchical and flat user profile clustering based on a case study. The proposed approach is implemented basing on a dataset of user profiles in an e-commerce context.\",\"PeriodicalId\":342806,\"journal\":{\"name\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSD47982.2019.9002690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9002690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

推荐系统越来越多地应用于计算机科学的不同领域。协同过滤仍然是互联网电子服务中备受推崇的推荐技术。该技术主要基于从具有相似配置文件的其他用户的偏好中推断出一部分用户兴趣。其中,采用聚类技术实现协同过滤。在这项工作中,我们提出了基于案例研究的分层和扁平用户配置文件聚类的比较。所提出的方法是基于电子商务上下文中的用户配置文件数据集实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flat and hierarchical user profile clustering in an e-commerce recommender system
Recommender systems are more and more used in different domains of computer science. The collaborative filtering remains a highly prized recommendation technique used by the e-services on the internet. This technique is mainly based on deducing a part of the user interests from the preferences of other users with similar profiles. Among the different approaches, the clustering technique is used to implement collaborative filtering. We propose in this work a comparison between hierarchical and flat user profile clustering based on a case study. The proposed approach is implemented basing on a dataset of user profiles in an e-commerce context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Merchant Ships that Most Likely to be Autonomously Operated Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark Predictive Process Monitoring related to the remaining time dimension: a value-driven framework Decomposition and Visualization of High-Dimensional Data in a Two Dimensional Interface Black SDN for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1