孟加拉语多模态神经机器翻译系统

Shantipriya Parida, Subhadarshi Panda, Satya Prakash Biswal, Ketan Kotwal, Arghyadeep Sen, S. Dash, P. Motlícek
{"title":"孟加拉语多模态神经机器翻译系统","authors":"Shantipriya Parida, Subhadarshi Panda, Satya Prakash Biswal, Ketan Kotwal, Arghyadeep Sen, S. Dash, P. Motlícek","doi":"10.26615/978-954-452-073-1_006","DOIUrl":null,"url":null,"abstract":"Multimodal Machine Translation (MMT) systems utilize additional information from other modalities beyond text to improve the quality of machine translation (MT). The additional modality is typically in the form of images. Despite proven advantages, it is indeed difficult to develop an MMT system for various languages primarily due to the lack of a suitable multimodal dataset. In this work, we develop an MMT for English-> Bengali using a recently published Bengali Visual Genome (BVG) dataset that contains images with associated bilingual textual descriptions. Through a comparative study of the developed MMT system vis-a-vis a Text-to-text translation, we demonstrate that the use of multimodal data not only improves the translation performance improvement in BLEU score of +1.3 on the development set, +3.9 on the evaluation test, and +0.9 on the challenge test set but also helps to resolve ambiguities in the pure text description. As per best of our knowledge, our English-Bengali MMT system is the first attempt in this direction, and thus, can act as a baseline for the subsequent research in MMT for low resource languages.","PeriodicalId":114625,"journal":{"name":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multimodal Neural Machine Translation System for English to Bengali\",\"authors\":\"Shantipriya Parida, Subhadarshi Panda, Satya Prakash Biswal, Ketan Kotwal, Arghyadeep Sen, S. Dash, P. Motlícek\",\"doi\":\"10.26615/978-954-452-073-1_006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal Machine Translation (MMT) systems utilize additional information from other modalities beyond text to improve the quality of machine translation (MT). The additional modality is typically in the form of images. Despite proven advantages, it is indeed difficult to develop an MMT system for various languages primarily due to the lack of a suitable multimodal dataset. In this work, we develop an MMT for English-> Bengali using a recently published Bengali Visual Genome (BVG) dataset that contains images with associated bilingual textual descriptions. Through a comparative study of the developed MMT system vis-a-vis a Text-to-text translation, we demonstrate that the use of multimodal data not only improves the translation performance improvement in BLEU score of +1.3 on the development set, +3.9 on the evaluation test, and +0.9 on the challenge test set but also helps to resolve ambiguities in the pure text description. As per best of our knowledge, our English-Bengali MMT system is the first attempt in this direction, and thus, can act as a baseline for the subsequent research in MMT for low resource languages.\",\"PeriodicalId\":114625,\"journal\":{\"name\":\"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-073-1_006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the FirstWorkshop on Multimodal Machine Translation for Low Resource Languages (MMTLRL 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-073-1_006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多模态机器翻译(MMT)系统利用文本以外其他模态的附加信息来提高机器翻译(MT)的质量。附加的形式通常是图像的形式。尽管具有已被证明的优势,但由于缺乏合适的多模态数据集,为各种语言开发MMT系统确实很困难。在这项工作中,我们使用最近发表的孟加拉语视觉基因组(BVG)数据集开发了英语->孟加拉语的MMT,该数据集包含带有相关双语文本描述的图像。通过对已开发的MMT系统与文本到文本翻译的比较研究,我们证明了多模态数据的使用不仅提高了翻译性能,在开发集的BLEU得分为+1.3,在评估测试中得分为+3.9,在挑战测试中得分为+0.9,而且有助于解决纯文本描述中的歧义。据我们所知,我们的英语-孟加拉语MMT系统是在这个方向上的第一次尝试,因此,可以作为对低资源语言的MMT后续研究的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Neural Machine Translation System for English to Bengali
Multimodal Machine Translation (MMT) systems utilize additional information from other modalities beyond text to improve the quality of machine translation (MT). The additional modality is typically in the form of images. Despite proven advantages, it is indeed difficult to develop an MMT system for various languages primarily due to the lack of a suitable multimodal dataset. In this work, we develop an MMT for English-> Bengali using a recently published Bengali Visual Genome (BVG) dataset that contains images with associated bilingual textual descriptions. Through a comparative study of the developed MMT system vis-a-vis a Text-to-text translation, we demonstrate that the use of multimodal data not only improves the translation performance improvement in BLEU score of +1.3 on the development set, +3.9 on the evaluation test, and +0.9 on the challenge test set but also helps to resolve ambiguities in the pure text description. As per best of our knowledge, our English-Bengali MMT system is the first attempt in this direction, and thus, can act as a baseline for the subsequent research in MMT for low resource languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiple Captions Embellished Multilingual Multi-Modal Neural Machine Translation Models and Tasks for Human-Centered Machine Translation Malta National Language Technology Platform: A vision for enhancing Malta’s official languages using Machine Translation Experiences of Adapting Multimodal Machine Translation Techniques for Hindi Multimodal Simultaneous Machine Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1