生物覆盖成分对减少垃圾填埋场甲烷排放的影响

Kristaps Siltumens, I. Grīnfelde, Sindija Liepa, E.P. Puzule, J. Burlakovs
{"title":"生物覆盖成分对减少垃圾填埋场甲烷排放的影响","authors":"Kristaps Siltumens, I. Grīnfelde, Sindija Liepa, E.P. Puzule, J. Burlakovs","doi":"10.5593/sgem2022v/4.2/s19.23","DOIUrl":null,"url":null,"abstract":"Solid municipal waste landfills are the third largest source of man-made methane emissions. Methane is one of the greenhouse gases contributing to global warming. The capture of methane emissions in the waste sector is addressed by collecting it and using it for energy production. Methane emissions from active or closed landfills can be reduced by methane oxidation, which is developed as a covering over these landfills. It is usually composed of a gas distribution layer that favours micro-organisms that consume methane. The aim of this study is to find the most appropriate composition of the biocover in which filling material waste is used. In laboratory conditions, an experiment was conducted that studied the effectiveness of the biocover developed in the laboratory. Three experimental columns were created at a height of 160 mm and 1500 mm. A active compost saturated with water at a thickness of 500 mm was used as a source of methane, a permeable layer of sand at a thickness of 300 mm was further formed and finally covered with biocover. The biocover was composed of 60% of fine fraction waste, 20% soil and 20% compost, of the total volume. The experiment was created on 6 June 2022 and the first measurements were made two weeks later with CRDS equipment Picarro G2508. Measurements were made weekly for 4 months. The results of the study show that methane is released more forcefully after the first two months of application of the biocover. This is related to compost in the biocover, which has started to decompose actively, that methane oxidising micro-organisms develop on average after two months.","PeriodicalId":234250,"journal":{"name":"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BIOCOVER COMPOSITION IMPACT ON LANDFILL METHANE EMISSIONS REDUCTION\",\"authors\":\"Kristaps Siltumens, I. Grīnfelde, Sindija Liepa, E.P. Puzule, J. Burlakovs\",\"doi\":\"10.5593/sgem2022v/4.2/s19.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid municipal waste landfills are the third largest source of man-made methane emissions. Methane is one of the greenhouse gases contributing to global warming. The capture of methane emissions in the waste sector is addressed by collecting it and using it for energy production. Methane emissions from active or closed landfills can be reduced by methane oxidation, which is developed as a covering over these landfills. It is usually composed of a gas distribution layer that favours micro-organisms that consume methane. The aim of this study is to find the most appropriate composition of the biocover in which filling material waste is used. In laboratory conditions, an experiment was conducted that studied the effectiveness of the biocover developed in the laboratory. Three experimental columns were created at a height of 160 mm and 1500 mm. A active compost saturated with water at a thickness of 500 mm was used as a source of methane, a permeable layer of sand at a thickness of 300 mm was further formed and finally covered with biocover. The biocover was composed of 60% of fine fraction waste, 20% soil and 20% compost, of the total volume. The experiment was created on 6 June 2022 and the first measurements were made two weeks later with CRDS equipment Picarro G2508. Measurements were made weekly for 4 months. The results of the study show that methane is released more forcefully after the first two months of application of the biocover. This is related to compost in the biocover, which has started to decompose actively, that methane oxidising micro-organisms develop on average after two months.\",\"PeriodicalId\":234250,\"journal\":{\"name\":\"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5593/sgem2022v/4.2/s19.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd SGEM International Multidisciplinary Scientific GeoConference Proceedings 2022, Energy and Clean Technologies, VOL 22, ISSUE 4.2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5593/sgem2022v/4.2/s19.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

城市固体垃圾填埋场是人为甲烷排放的第三大来源。甲烷是导致全球变暖的温室气体之一。通过收集并将其用于能源生产,解决了废物部门甲烷排放的捕获问题。活跃的或封闭的垃圾填埋场的甲烷排放可以通过甲烷氧化来减少,甲烷氧化被开发为覆盖这些垃圾填埋场。它通常由有利于微生物消耗甲烷的气体分布层组成。本研究的目的是找到最合适的生物覆盖的组成,其中填充物废物被使用。在实验室条件下,进行了一项实验,研究了在实验室开发的生物覆盖的有效性。在160毫米和1500毫米的高度创建了三个实验柱。利用厚度为500 mm的饱和水的活性堆肥作为甲烷源,进一步形成厚度为300 mm的可渗透砂层,最终覆盖生物覆盖物。生物覆盖由60%的细粒废弃物、20%的土壤和20%的堆肥组成。该实验于2022年6月6日创建,两周后用CRDS设备Picarro G2508进行了第一次测量。每周测量一次,持续4个月。研究结果表明,在施用生物覆盖的前两个月,甲烷释放的力度更大。这与生物覆盖中的堆肥已经开始积极分解有关,甲烷氧化微生物平均在两个月后就会出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BIOCOVER COMPOSITION IMPACT ON LANDFILL METHANE EMISSIONS REDUCTION
Solid municipal waste landfills are the third largest source of man-made methane emissions. Methane is one of the greenhouse gases contributing to global warming. The capture of methane emissions in the waste sector is addressed by collecting it and using it for energy production. Methane emissions from active or closed landfills can be reduced by methane oxidation, which is developed as a covering over these landfills. It is usually composed of a gas distribution layer that favours micro-organisms that consume methane. The aim of this study is to find the most appropriate composition of the biocover in which filling material waste is used. In laboratory conditions, an experiment was conducted that studied the effectiveness of the biocover developed in the laboratory. Three experimental columns were created at a height of 160 mm and 1500 mm. A active compost saturated with water at a thickness of 500 mm was used as a source of methane, a permeable layer of sand at a thickness of 300 mm was further formed and finally covered with biocover. The biocover was composed of 60% of fine fraction waste, 20% soil and 20% compost, of the total volume. The experiment was created on 6 June 2022 and the first measurements were made two weeks later with CRDS equipment Picarro G2508. Measurements were made weekly for 4 months. The results of the study show that methane is released more forcefully after the first two months of application of the biocover. This is related to compost in the biocover, which has started to decompose actively, that methane oxidising micro-organisms develop on average after two months.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMPROVEMENT OF SOIL RESILIENCE TO ENVIRONMENTAL CHALLENGES USING DIFFERENT FOOD WASTES AS SOIL AMENDMENTS ITALIAN LEGISLATION IN FORCE FOR THE ESTABLISHMENT OF RENEWABLE ENERGY COMMUNITIES AND CITIZENS EFFECT OF SHARED ELECTRIC SCOOTERS ON URBAN GREEN HOUSE GAS EMISSIONS: CASE OF RIGA INFLUENCE OF GROWN CULTURE ON N2O FORMATION FARM MANAGEMENT PRACTICE IMPACT ON N2O EMISSION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1