针对特定类别的预训练稀疏自动编码器,用于学习文档分类的有效特征

Maysa I. Abdulhussain, J. Q. Gan
{"title":"针对特定类别的预训练稀疏自动编码器,用于学习文档分类的有效特征","authors":"Maysa I. Abdulhussain, J. Q. Gan","doi":"10.1109/CEEC.2016.7835885","DOIUrl":null,"url":null,"abstract":"Sparse autoencoder is a commonly used deep learning approach for automatically learning features from unlabelled data (unsupervised feature learning). This paper proposes class-specific (supervised) pre-trained approach based on sparse autoencoder to gain low-dimensional interesting structure of features with high performance in document classification. Experimental results have demonstrated the advantages and usefulness of the proposed method in document classification in high-dimensional feature space, in terms of the limited number of features required to achieve good classification accuracy.","PeriodicalId":114518,"journal":{"name":"2016 8th Computer Science and Electronic Engineering (CEEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Class-specific pre-trained sparse autoencoders for learning effective features for document classification\",\"authors\":\"Maysa I. Abdulhussain, J. Q. Gan\",\"doi\":\"10.1109/CEEC.2016.7835885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse autoencoder is a commonly used deep learning approach for automatically learning features from unlabelled data (unsupervised feature learning). This paper proposes class-specific (supervised) pre-trained approach based on sparse autoencoder to gain low-dimensional interesting structure of features with high performance in document classification. Experimental results have demonstrated the advantages and usefulness of the proposed method in document classification in high-dimensional feature space, in terms of the limited number of features required to achieve good classification accuracy.\",\"PeriodicalId\":114518,\"journal\":{\"name\":\"2016 8th Computer Science and Electronic Engineering (CEEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Computer Science and Electronic Engineering (CEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEC.2016.7835885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Computer Science and Electronic Engineering (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2016.7835885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

稀疏自编码器是一种常用的深度学习方法,用于从未标记数据(无监督特征学习)中自动学习特征。本文提出了一种基于稀疏自编码器的类特定(监督)预训练方法,以获得具有高性能的低维特征感兴趣结构。实验结果证明了该方法在高维特征空间的文档分类中所具有的优势和实用性,因为实现良好分类精度所需的特征数量有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Class-specific pre-trained sparse autoencoders for learning effective features for document classification
Sparse autoencoder is a commonly used deep learning approach for automatically learning features from unlabelled data (unsupervised feature learning). This paper proposes class-specific (supervised) pre-trained approach based on sparse autoencoder to gain low-dimensional interesting structure of features with high performance in document classification. Experimental results have demonstrated the advantages and usefulness of the proposed method in document classification in high-dimensional feature space, in terms of the limited number of features required to achieve good classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generation and VR visualization of 3D point clouds for drone target validation assisted by an operator Focus-sensitive dwell time in EyeBCI: Pilot study Quadrotor transporting cable-suspended load using iterative Linear Quadratic regulator (iLQR) optimal control Clonal Selection Algorithm parallelization with MPJExpress Serious games for Fire and Rescue training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1