在相关信道中通过大系统分析实现分散多小区波束形成

Hossein Asgharimoghaddam, Antti Tölli, Nandana Rajatheva
{"title":"在相关信道中通过大系统分析实现分散多小区波束形成","authors":"Hossein Asgharimoghaddam, Antti Tölli, Nandana Rajatheva","doi":"10.5281/ZENODO.54496","DOIUrl":null,"url":null,"abstract":"The optimal decentralization of multi-cell minimum power beamforming requires exchange of terms related to instantaneous inter-cell interference (ICI) values or channel state information (CSI) via a backhaul link. This limits the achievable performance in the limited backhaul capacity scenarios, especially when dealing with a fast fading scenario or a large number of users and antennas. In this work, we utilize the results from random matrix theory for developing two algorithms based on uplink-downlink duality and optimization decomposition relying on limited cooperation between nodes to share knowledge about channel statistics. As a result, approximately optimal power allocations are achieved based on statistics of the channels with greatly reduced backhaul information exchange rate. The simulations show that the performance gap due to the approximations is small even when the problem dimensions are relatively small.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Decentralized multi-cell beamforming via large system analysis in correlated channels\",\"authors\":\"Hossein Asgharimoghaddam, Antti Tölli, Nandana Rajatheva\",\"doi\":\"10.5281/ZENODO.54496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal decentralization of multi-cell minimum power beamforming requires exchange of terms related to instantaneous inter-cell interference (ICI) values or channel state information (CSI) via a backhaul link. This limits the achievable performance in the limited backhaul capacity scenarios, especially when dealing with a fast fading scenario or a large number of users and antennas. In this work, we utilize the results from random matrix theory for developing two algorithms based on uplink-downlink duality and optimization decomposition relying on limited cooperation between nodes to share knowledge about channel statistics. As a result, approximately optimal power allocations are achieved based on statistics of the channels with greatly reduced backhaul information exchange rate. The simulations show that the performance gap due to the approximations is small even when the problem dimensions are relatively small.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.54496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.54496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

多小区最小功率波束形成的最佳分散化需要通过回程链路交换与瞬时小区间干扰(ICI)值或信道状态信息(CSI)相关的术语。这限制了在回程容量有限的情况下可实现的性能,特别是在处理快速衰落场景或大量用户和天线的情况下。在这项工作中,我们利用随机矩阵理论的结果开发了两种基于上行链路-下行链路对偶性和优化分解的算法,依赖于节点之间的有限合作来共享信道统计知识。结果表明,在信道统计的基础上实现了近似最优的功率分配,回程信息交换速率大大降低。仿真结果表明,当问题尺寸相对较小时,由近似引起的性能差距较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized multi-cell beamforming via large system analysis in correlated channels
The optimal decentralization of multi-cell minimum power beamforming requires exchange of terms related to instantaneous inter-cell interference (ICI) values or channel state information (CSI) via a backhaul link. This limits the achievable performance in the limited backhaul capacity scenarios, especially when dealing with a fast fading scenario or a large number of users and antennas. In this work, we utilize the results from random matrix theory for developing two algorithms based on uplink-downlink duality and optimization decomposition relying on limited cooperation between nodes to share knowledge about channel statistics. As a result, approximately optimal power allocations are achieved based on statistics of the channels with greatly reduced backhaul information exchange rate. The simulations show that the performance gap due to the approximations is small even when the problem dimensions are relatively small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1