使用纹理映射和mipmapping来渲染VLSI布局

J. Solomon, M. Horowitz
{"title":"使用纹理映射和mipmapping来渲染VLSI布局","authors":"J. Solomon, M. Horowitz","doi":"10.1145/378239.379012","DOIUrl":null,"url":null,"abstract":"This paper presents a method of using texture mapping with mipmapping to render a VLSI layout. Texture mapping is used to save already rasterized areas of the layout from frame to frame, and to take advantage of any hardware accelerated capabilities of the host platform. Mipmapping is used to select which textures to display so that the amount of information sent to the display is bounded, and the image rendered on the display is filtered correctly. Additionally, two caching schemes are employed. The first, used to bound memory consumption, is a general purpose cache that holds textures spatially close to the user's current viewpoint. The second, used to speed up the rendering process, is a cache of heavily used sub-designs that are precomputed so rasterization on the fly is not necessary. An experimental implementation shows that real-time navigation can be achieved on arbitrarily large designs. Results also show how this technique ensures that image quality does not degrade as the number of polygons drawn increases, avoiding the aliasing artifacts common in other layout systems.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using texture mapping with mipmapping to render a VLSI layout\",\"authors\":\"J. Solomon, M. Horowitz\",\"doi\":\"10.1145/378239.379012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of using texture mapping with mipmapping to render a VLSI layout. Texture mapping is used to save already rasterized areas of the layout from frame to frame, and to take advantage of any hardware accelerated capabilities of the host platform. Mipmapping is used to select which textures to display so that the amount of information sent to the display is bounded, and the image rendered on the display is filtered correctly. Additionally, two caching schemes are employed. The first, used to bound memory consumption, is a general purpose cache that holds textures spatially close to the user's current viewpoint. The second, used to speed up the rendering process, is a cache of heavily used sub-designs that are precomputed so rasterization on the fly is not necessary. An experimental implementation shows that real-time navigation can be achieved on arbitrarily large designs. Results also show how this technique ensures that image quality does not degrade as the number of polygons drawn increases, avoiding the aliasing artifacts common in other layout systems.\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.379012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种使用纹理映射和mipmapping来渲染VLSI布局的方法。纹理映射用于从一帧到另一帧保存已经栅格化的布局区域,并利用主机平台的任何硬件加速功能。Mipmapping用于选择要显示的纹理,以便发送到显示器的信息量是有限的,并且在显示器上渲染的图像被正确过滤。此外,还采用了两种缓存方案。第一个用于绑定内存消耗,是一个通用的缓存,它在空间上保存纹理接近用户当前的视点。第二种是用来加速渲染过程的,它是预先计算的大量使用的子设计的缓存,因此不需要动态光栅化。实验结果表明,该方法可以在任意大的设计上实现实时导航。结果还显示了该技术如何确保图像质量不会随着绘制的多边形数量的增加而降低,从而避免了其他布局系统中常见的混叠工件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using texture mapping with mipmapping to render a VLSI layout
This paper presents a method of using texture mapping with mipmapping to render a VLSI layout. Texture mapping is used to save already rasterized areas of the layout from frame to frame, and to take advantage of any hardware accelerated capabilities of the host platform. Mipmapping is used to select which textures to display so that the amount of information sent to the display is bounded, and the image rendered on the display is filtered correctly. Additionally, two caching schemes are employed. The first, used to bound memory consumption, is a general purpose cache that holds textures spatially close to the user's current viewpoint. The second, used to speed up the rendering process, is a cache of heavily used sub-designs that are precomputed so rasterization on the fly is not necessary. An experimental implementation shows that real-time navigation can be achieved on arbitrarily large designs. Results also show how this technique ensures that image quality does not degrade as the number of polygons drawn increases, avoiding the aliasing artifacts common in other layout systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
False coupling interactions in static timing analysis Scalable hybrid verification of complex microprocessors System-level power/performance analysis for embedded systems design Automated pipeline design Test strategies for BIST at the algorithmic and register-transfer levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1