Xinjian Zhao, Fei Xia, Guoquan Yuan, Shi Chen, Song Zhang
{"title":"基于深度监督对比学习和归一化分类器的网络入侵检测","authors":"Xinjian Zhao, Fei Xia, Guoquan Yuan, Shi Chen, Song Zhang","doi":"10.1109/ICCC56324.2022.10065890","DOIUrl":null,"url":null,"abstract":"Network intrusion detection (NID) has attracted much attention as it is essential in preventing security threats and protecting networks from attacks. However, existing methods face the following challenges: (1) poor feature extraction capability; (2) not well-designed to address the class imbalance problem; (3) failure to take full use of label information and learn classification-oriented features, degrading the NID performance. To this end, we proposed SC-Net, a two-stage training model with deep supervised learning and a normalized classifier, to overcome the abovementioned challenges. During the pretraining stage, the learned embedding will be optimized by both a supervised contrastive loss and a classification loss, so that the embedding with the same label will be more compact in the feature space. After that, in the finetuning stage, the weight of the classifier will be normalized for catering to classification tasks in scenarios of a class imbalance dataset. The experiment shows that SC-Net outperforms all comparative models in four metrics.","PeriodicalId":263098,"journal":{"name":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SC-Net: Network Intrusion Detection with Deep Supervised Contrastive Learning and Normalized Classifier\",\"authors\":\"Xinjian Zhao, Fei Xia, Guoquan Yuan, Shi Chen, Song Zhang\",\"doi\":\"10.1109/ICCC56324.2022.10065890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network intrusion detection (NID) has attracted much attention as it is essential in preventing security threats and protecting networks from attacks. However, existing methods face the following challenges: (1) poor feature extraction capability; (2) not well-designed to address the class imbalance problem; (3) failure to take full use of label information and learn classification-oriented features, degrading the NID performance. To this end, we proposed SC-Net, a two-stage training model with deep supervised learning and a normalized classifier, to overcome the abovementioned challenges. During the pretraining stage, the learned embedding will be optimized by both a supervised contrastive loss and a classification loss, so that the embedding with the same label will be more compact in the feature space. After that, in the finetuning stage, the weight of the classifier will be normalized for catering to classification tasks in scenarios of a class imbalance dataset. The experiment shows that SC-Net outperforms all comparative models in four metrics.\",\"PeriodicalId\":263098,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC56324.2022.10065890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC56324.2022.10065890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SC-Net: Network Intrusion Detection with Deep Supervised Contrastive Learning and Normalized Classifier
Network intrusion detection (NID) has attracted much attention as it is essential in preventing security threats and protecting networks from attacks. However, existing methods face the following challenges: (1) poor feature extraction capability; (2) not well-designed to address the class imbalance problem; (3) failure to take full use of label information and learn classification-oriented features, degrading the NID performance. To this end, we proposed SC-Net, a two-stage training model with deep supervised learning and a normalized classifier, to overcome the abovementioned challenges. During the pretraining stage, the learned embedding will be optimized by both a supervised contrastive loss and a classification loss, so that the embedding with the same label will be more compact in the feature space. After that, in the finetuning stage, the weight of the classifier will be normalized for catering to classification tasks in scenarios of a class imbalance dataset. The experiment shows that SC-Net outperforms all comparative models in four metrics.