求全一基矩阵中势环数的一种方法

Sheng Jiang, F. Lau
{"title":"求全一基矩阵中势环数的一种方法","authors":"Sheng Jiang, F. Lau","doi":"10.23919/ICACT.2018.8323661","DOIUrl":null,"url":null,"abstract":"The “Tree Method” is usually used to identify potential cycles in low-density parity-check codes. However, with the increasing demand of high girth codes, the method becomes hard to implement because of the exponential increase of both space complexity and time complexity. In this paper, a new method is introduced to evaluate potential cycles for all-one base matrix. The method applies to large cycle length and arbitrary size base matrix. The principle of potential cycle and potential cycle duplication are studied to support the new approach. Instead of doing low efficient exhaustive search, the approach gives the number of potential cycles without duplication directly. The results of cycle numbers are given, which are verified by the “Tree Method”.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach to evaluating the number of potential cycles in an all-one base matrix\",\"authors\":\"Sheng Jiang, F. Lau\",\"doi\":\"10.23919/ICACT.2018.8323661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The “Tree Method” is usually used to identify potential cycles in low-density parity-check codes. However, with the increasing demand of high girth codes, the method becomes hard to implement because of the exponential increase of both space complexity and time complexity. In this paper, a new method is introduced to evaluate potential cycles for all-one base matrix. The method applies to large cycle length and arbitrary size base matrix. The principle of potential cycle and potential cycle duplication are studied to support the new approach. Instead of doing low efficient exhaustive search, the approach gives the number of potential cycles without duplication directly. The results of cycle numbers are given, which are verified by the “Tree Method”.\",\"PeriodicalId\":228625,\"journal\":{\"name\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT.2018.8323661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“树形方法”通常用于识别低密度奇偶校验码中的潜在循环。然而,随着高周长码需求的增加,由于空间复杂度和时间复杂度呈指数增长,该方法变得难以实现。本文提出了一种求全一基矩阵势环的新方法。该方法适用于大周期长度和任意大小的基矩阵。研究了势循环和势循环重复的原理,以支持新方法。该方法不需要进行低效率的穷举搜索,而是直接给出无重复的潜在循环数。给出了循环数的计算结果,并用“树形法”进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approach to evaluating the number of potential cycles in an all-one base matrix
The “Tree Method” is usually used to identify potential cycles in low-density parity-check codes. However, with the increasing demand of high girth codes, the method becomes hard to implement because of the exponential increase of both space complexity and time complexity. In this paper, a new method is introduced to evaluate potential cycles for all-one base matrix. The method applies to large cycle length and arbitrary size base matrix. The principle of potential cycle and potential cycle duplication are studied to support the new approach. Instead of doing low efficient exhaustive search, the approach gives the number of potential cycles without duplication directly. The results of cycle numbers are given, which are verified by the “Tree Method”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cooperative trilateration technique for object localization SvgAI — Training artificial intelligent agent to use SVG editor EEG-signals based cognitive workload detection of vehicle driver using deep learning What are the optimum quasi-identifiers to re-identify medical records? Customized embedded system design for lower limb rehabilitation patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1