SPOT-1D2:利用高序列同一性训练集和循环和残差卷积神经网络集成改进蛋白质二级结构预测

Jaspreet Singh, Jaswinder Singh, K. Paliwal, Andrew Busch, Yaoqi Zhou
{"title":"SPOT-1D2:利用高序列同一性训练集和循环和残差卷积神经网络集成改进蛋白质二级结构预测","authors":"Jaspreet Singh, Jaswinder Singh, K. Paliwal, Andrew Busch, Yaoqi Zhou","doi":"10.1109/CIBCB49929.2021.9562849","DOIUrl":null,"url":null,"abstract":"Protein secondary structure prediction has been a long-standing problem in computational biology. Recent advances in deep contextual learning have enabled its performance in three-state prediction closer to the theoretical limit at 88–90%. Here, we showed that a large training set with 95% sequence identity cutoff can improve prediction of secondary structures even for those unrelated test sequences (<25% sequence identity cutoff) compared to the use of a non-redundant training dataset with 25% sequence identity cutoff. The three-state prediction edges closer to an accuracy of 87% and eight-state at 76%.The resulting model called SPOT-1D2 is freely available to academic users at https://github.com/jas-preet/SPOT-1D2.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPOT-1D2: Improving Protein Secondary Structure Prediction using High Sequence Identity Training Set and an Ensemble of Recurrent and Residual-convolutional Neural Networks\",\"authors\":\"Jaspreet Singh, Jaswinder Singh, K. Paliwal, Andrew Busch, Yaoqi Zhou\",\"doi\":\"10.1109/CIBCB49929.2021.9562849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein secondary structure prediction has been a long-standing problem in computational biology. Recent advances in deep contextual learning have enabled its performance in three-state prediction closer to the theoretical limit at 88–90%. Here, we showed that a large training set with 95% sequence identity cutoff can improve prediction of secondary structures even for those unrelated test sequences (<25% sequence identity cutoff) compared to the use of a non-redundant training dataset with 25% sequence identity cutoff. The three-state prediction edges closer to an accuracy of 87% and eight-state at 76%.The resulting model called SPOT-1D2 is freely available to academic users at https://github.com/jas-preet/SPOT-1D2.\",\"PeriodicalId\":163387,\"journal\":{\"name\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB49929.2021.9562849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

蛋白质二级结构预测是计算生物学中一个长期存在的问题。深度上下文学习的最新进展使其在三状态预测中的表现更接近88-90%的理论极限。在这里,我们表明,与使用具有25%序列身份截止率的非冗余训练数据集相比,具有95%序列身份截止率的大型训练集可以改善二级结构的预测,甚至对于那些不相关的测试序列(<25%序列身份截止率)。三州预测的准确率接近87%,八州预测的准确率为76%。由此产生的模型被称为SPOT-1D2,学术用户可以在https://github.com/jas-preet/SPOT-1D2上免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPOT-1D2: Improving Protein Secondary Structure Prediction using High Sequence Identity Training Set and an Ensemble of Recurrent and Residual-convolutional Neural Networks
Protein secondary structure prediction has been a long-standing problem in computational biology. Recent advances in deep contextual learning have enabled its performance in three-state prediction closer to the theoretical limit at 88–90%. Here, we showed that a large training set with 95% sequence identity cutoff can improve prediction of secondary structures even for those unrelated test sequences (<25% sequence identity cutoff) compared to the use of a non-redundant training dataset with 25% sequence identity cutoff. The three-state prediction edges closer to an accuracy of 87% and eight-state at 76%.The resulting model called SPOT-1D2 is freely available to academic users at https://github.com/jas-preet/SPOT-1D2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ring Optimization of Epidemic Contact Networks A Comparison of Novel Representations for Evolving Epidemic Networks Multi-distance based spectral embedding fusion for clustering single-cell methylation data Predicting Influenza A Viral Host Using PSSM and Word Embeddings Identification of Genes Associated with Alzheimer's Disease using Evolutionary Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1