在瑞典语境中使用手工制作的风格特征的相似性排名

Johan Fernquist, Björn Pelzer, Lukas Lundmark, Lisa Kaati, F. Johansson
{"title":"在瑞典语境中使用手工制作的风格特征的相似性排名","authors":"Johan Fernquist, Björn Pelzer, Lukas Lundmark, Lisa Kaati, F. Johansson","doi":"10.1145/3487351.3492719","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new type of handcrafted textual features called stylometric traits, used to create a stylistic writeprint of an author's writing style. These can be divided into four categories: (i) word variations, (ii) abbreviations, (iii) internet jargon, and (iv) numbers. A similarity ranking method is developed for ranking users' social media accounts based on how similar their writeprints are. We experiment with both vector distance metrics and machine learning-based class probabilities to measure similarity. The best performance is achieved using stylometric traits combined with the Jensen-Shannon distance metric, outperforming traditional stylometric features used in previous research.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity ranking using handcrafted stylometric traits in a swedish context\",\"authors\":\"Johan Fernquist, Björn Pelzer, Lukas Lundmark, Lisa Kaati, F. Johansson\",\"doi\":\"10.1145/3487351.3492719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new type of handcrafted textual features called stylometric traits, used to create a stylistic writeprint of an author's writing style. These can be divided into four categories: (i) word variations, (ii) abbreviations, (iii) internet jargon, and (iv) numbers. A similarity ranking method is developed for ranking users' social media accounts based on how similar their writeprints are. We experiment with both vector distance metrics and machine learning-based class probabilities to measure similarity. The best performance is achieved using stylometric traits combined with the Jensen-Shannon distance metric, outperforming traditional stylometric features used in previous research.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3492719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3492719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一种被称为文体特征的新型手工文本特征,用于创建作者写作风格的文体印记。这些可以分为四类:(i)单词变体,(ii)缩写,(iii)网络术语,(iv)数字。研究人员开发了一种相似度排名方法,根据用户的文字相似度对他们的社交媒体账户进行排名。我们使用向量距离度量和基于机器学习的类概率来测量相似性。使用文体学特征与Jensen-Shannon距离度量相结合,达到了最佳性能,优于以往研究中使用的传统文体学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Similarity ranking using handcrafted stylometric traits in a swedish context
In this paper we introduce a new type of handcrafted textual features called stylometric traits, used to create a stylistic writeprint of an author's writing style. These can be divided into four categories: (i) word variations, (ii) abbreviations, (iii) internet jargon, and (iv) numbers. A similarity ranking method is developed for ranking users' social media accounts based on how similar their writeprints are. We experiment with both vector distance metrics and machine learning-based class probabilities to measure similarity. The best performance is achieved using stylometric traits combined with the Jensen-Shannon distance metric, outperforming traditional stylometric features used in previous research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1