Power Profiler:在Android移动设备上监测ML算法的能耗

Karim Boubouh, Robert Basmadjian
{"title":"Power Profiler:在Android移动设备上监测ML算法的能耗","authors":"Karim Boubouh, Robert Basmadjian","doi":"10.1145/3599733.3606304","DOIUrl":null,"url":null,"abstract":"Energy efficiency is a critical concern for machine learning (ML) algorithms deployed in data centers. Recently, many works in the literature have focused on running ML algorithms on energy-efficient and constrained hardware, such as mobile phones, to reduce the energy footprint of training ML models. This paper introduces the Power Profiler, an open-source monitoring platform that provides valuable insights into the energy consumption of ML algorithms on Android mobile devices. By capturing key performance indicators (KPIs) such as voltage, current, and CPU usage, the Power Profiler enables real-time monitoring of their energy usage. It eliminates the need for custom hardware installations and facilitates the development of energy-efficient ML models. The Power Profiler can empower researchers to understand and optimize the energy consumption patterns of ML algorithms, facilitating the creation of sustainable ML models for energy-efficient mobile deployments.","PeriodicalId":114998,"journal":{"name":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Profiler: Monitoring Energy Consumption of ML Algorithms on Android Mobile Devices\",\"authors\":\"Karim Boubouh, Robert Basmadjian\",\"doi\":\"10.1145/3599733.3606304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is a critical concern for machine learning (ML) algorithms deployed in data centers. Recently, many works in the literature have focused on running ML algorithms on energy-efficient and constrained hardware, such as mobile phones, to reduce the energy footprint of training ML models. This paper introduces the Power Profiler, an open-source monitoring platform that provides valuable insights into the energy consumption of ML algorithms on Android mobile devices. By capturing key performance indicators (KPIs) such as voltage, current, and CPU usage, the Power Profiler enables real-time monitoring of their energy usage. It eliminates the need for custom hardware installations and facilitates the development of energy-efficient ML models. The Power Profiler can empower researchers to understand and optimize the energy consumption patterns of ML algorithms, facilitating the creation of sustainable ML models for energy-efficient mobile deployments.\",\"PeriodicalId\":114998,\"journal\":{\"name\":\"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3599733.3606304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3599733.3606304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于部署在数据中心的机器学习(ML)算法来说,能源效率是一个关键问题。最近,文献中的许多工作都专注于在节能和受限的硬件(如手机)上运行ML算法,以减少训练ML模型的能量足迹。本文介绍了Power Profiler,这是一个开源监控平台,可以提供有关Android移动设备上机器学习算法能耗的宝贵见解。通过捕获关键性能指标(kpi),如电压、电流和CPU使用情况,Power Profiler可以实时监控其能源使用情况。它消除了定制硬件安装的需要,并促进了节能ML模型的开发。Power Profiler可以帮助研究人员了解和优化机器学习算法的能耗模式,促进为节能移动部署创建可持续的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Profiler: Monitoring Energy Consumption of ML Algorithms on Android Mobile Devices
Energy efficiency is a critical concern for machine learning (ML) algorithms deployed in data centers. Recently, many works in the literature have focused on running ML algorithms on energy-efficient and constrained hardware, such as mobile phones, to reduce the energy footprint of training ML models. This paper introduces the Power Profiler, an open-source monitoring platform that provides valuable insights into the energy consumption of ML algorithms on Android mobile devices. By capturing key performance indicators (KPIs) such as voltage, current, and CPU usage, the Power Profiler enables real-time monitoring of their energy usage. It eliminates the need for custom hardware installations and facilitates the development of energy-efficient ML models. The Power Profiler can empower researchers to understand and optimize the energy consumption patterns of ML algorithms, facilitating the creation of sustainable ML models for energy-efficient mobile deployments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Forecast Characteristics on the Forecast Value for the Dispatchable Feeder Cost Optimization for the Edge-Cloud Continuum by Energy-Aware Workload Placement Investigating the Impact of Space Allocation Strategy on Energy-Comfort Trade-off in Office Buildings Towards closing the data gap: A project-driven distributed energy resource dataset for the U.S. Grid EXARL-PARS: Parallel Augmented Random Search Using Reinforcement Learning at Scale for Applications in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1