{"title":"通过基于树的卷积在api增强的AST上捕获源代码语义","authors":"Long Chen, Wei Ye, Shikun Zhang","doi":"10.1145/3310273.3321560","DOIUrl":null,"url":null,"abstract":"When deep learning meets big code, a key question is how to efficiently learn a distributed representation for source code that can capture its semantics effectively. We propose to use tree-based convolution over API-enhanced AST. To demonstrate the effectiveness of our approach, we apply it to detect semantic clones---code fragments with similar semantics but dissimilar syntax. Experiment results show that our approach outperforms an existing state-of-the-art approach that uses tree-based LSTM, with an increase of 0.39 and 0.12 in F1-score on OJClone and BigCloneBench respectively. We further propose architectures that incorporate our approach for code search and code summarization.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"20 3 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Capturing source code semantics via tree-based convolution over API-enhanced AST\",\"authors\":\"Long Chen, Wei Ye, Shikun Zhang\",\"doi\":\"10.1145/3310273.3321560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When deep learning meets big code, a key question is how to efficiently learn a distributed representation for source code that can capture its semantics effectively. We propose to use tree-based convolution over API-enhanced AST. To demonstrate the effectiveness of our approach, we apply it to detect semantic clones---code fragments with similar semantics but dissimilar syntax. Experiment results show that our approach outperforms an existing state-of-the-art approach that uses tree-based LSTM, with an increase of 0.39 and 0.12 in F1-score on OJClone and BigCloneBench respectively. We further propose architectures that incorporate our approach for code search and code summarization.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"20 3 Suppl 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3321560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3321560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capturing source code semantics via tree-based convolution over API-enhanced AST
When deep learning meets big code, a key question is how to efficiently learn a distributed representation for source code that can capture its semantics effectively. We propose to use tree-based convolution over API-enhanced AST. To demonstrate the effectiveness of our approach, we apply it to detect semantic clones---code fragments with similar semantics but dissimilar syntax. Experiment results show that our approach outperforms an existing state-of-the-art approach that uses tree-based LSTM, with an increase of 0.39 and 0.12 in F1-score on OJClone and BigCloneBench respectively. We further propose architectures that incorporate our approach for code search and code summarization.