基于电子鼻和机器学习的原始阿拉比卡果子狸咖啡气味识别

Whilly Harsono, R. Sarno, S. Sabilla
{"title":"基于电子鼻和机器学习的原始阿拉比卡果子狸咖啡气味识别","authors":"Whilly Harsono, R. Sarno, S. Sabilla","doi":"10.1109/iSemantic50169.2020.9234234","DOIUrl":null,"url":null,"abstract":"Many studies have used an electronic nose (E-nose) to detect several types of coffee. To the best of our knowledge, none of the studies have tried to detect odors from a mixture of several types of coffee. Therefore, this research proposes E-nose which can be used to recognize original Arabica civet coffee. The mixture of Arabica civet coffee and Robusta coffee (non-civet coffee) is used as the object of this research. Nine combinations of mixture are prepared in this study. Those combinations are referred to as classes. After collecting the data, a statistical calculation would be determined to obtain parameter statistics. Moreover, the classification method used in this study is to recognize original Arabica civet coffee and original Robusta coffee. Several classifications had been compared, namely Logistic Regression (LR), Linear Discriminant Analysis (LDA), and K-Nearest Neighbors (KNN). The best result is the KNN method with an accuracy value of 97.7% for nine classes.","PeriodicalId":345558,"journal":{"name":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Recognition of Original Arabica Civet Coffee based on Odor using Electronic Nose and Machine Learning\",\"authors\":\"Whilly Harsono, R. Sarno, S. Sabilla\",\"doi\":\"10.1109/iSemantic50169.2020.9234234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies have used an electronic nose (E-nose) to detect several types of coffee. To the best of our knowledge, none of the studies have tried to detect odors from a mixture of several types of coffee. Therefore, this research proposes E-nose which can be used to recognize original Arabica civet coffee. The mixture of Arabica civet coffee and Robusta coffee (non-civet coffee) is used as the object of this research. Nine combinations of mixture are prepared in this study. Those combinations are referred to as classes. After collecting the data, a statistical calculation would be determined to obtain parameter statistics. Moreover, the classification method used in this study is to recognize original Arabica civet coffee and original Robusta coffee. Several classifications had been compared, namely Logistic Regression (LR), Linear Discriminant Analysis (LDA), and K-Nearest Neighbors (KNN). The best result is the KNN method with an accuracy value of 97.7% for nine classes.\",\"PeriodicalId\":345558,\"journal\":{\"name\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSemantic50169.2020.9234234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Seminar on Application for Technology of Information and Communication (iSemantic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSemantic50169.2020.9234234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

许多研究都使用电子鼻来检测几种咖啡。据我们所知,没有一项研究试图检测几种咖啡混合物的气味。因此,本研究提出了一种可用于鉴别原阿拉比卡果子狸咖啡的电子鼻。以阿拉比卡果子狸咖啡和罗布斯塔咖啡(非果子狸咖啡)的混合物为研究对象。本研究共制备了9种混合制剂。这些组合被称为类。收集数据后,确定统计计算,得到参数统计信息。此外,本研究采用的分类方法是对原阿拉比卡果子狸咖啡和原罗布斯塔咖啡进行识别。比较了几种分类方法,即逻辑回归(LR)、线性判别分析(LDA)和k近邻(KNN)。KNN方法在9个分类中准确率最高,达到97.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of Original Arabica Civet Coffee based on Odor using Electronic Nose and Machine Learning
Many studies have used an electronic nose (E-nose) to detect several types of coffee. To the best of our knowledge, none of the studies have tried to detect odors from a mixture of several types of coffee. Therefore, this research proposes E-nose which can be used to recognize original Arabica civet coffee. The mixture of Arabica civet coffee and Robusta coffee (non-civet coffee) is used as the object of this research. Nine combinations of mixture are prepared in this study. Those combinations are referred to as classes. After collecting the data, a statistical calculation would be determined to obtain parameter statistics. Moreover, the classification method used in this study is to recognize original Arabica civet coffee and original Robusta coffee. Several classifications had been compared, namely Logistic Regression (LR), Linear Discriminant Analysis (LDA), and K-Nearest Neighbors (KNN). The best result is the KNN method with an accuracy value of 97.7% for nine classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independent Public Video Conference Network Sentiment Analysis of Yelp Review Extrovert and Introvert Classification based on Myers-Briggs Type Indicator(MBTI) using Support Vector Machine (SVM) Brain Segmentation using Adaptive Thresholding, K-Means Clustering and Mathematical Morphology in MRI Data Handwriting Recognition of Hiragana Characters using Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1