视网膜病变概率图的自动生成

J. Rudas, Ricardo Toscano, G. Sánchez
{"title":"视网膜病变概率图的自动生成","authors":"J. Rudas, Ricardo Toscano, G. Sánchez","doi":"10.1109/STSIVA.2012.6340548","DOIUrl":null,"url":null,"abstract":"The aim of this paper is the automatic generation of probability lesion maps from a color retinography analysis. A probability map determines the degree of belonging of each pixel in a given set. This process is based on three sequences of procedures: A set of attributes (contrasts enhancement zones), a suppression of artifacts obstacles and a setting of value of each pixel belong to a bright lesion, using probabilistic mapping by supervised classification. The validation of the results was carried out by comparing the subsequent binary map with prior probabilistic diagnosis. The results were analyzed by mean square error (MSE) between resulting diagnosis and diagnostic specialist. MSE was reached of 1.22 on a set of 40 images DIARECTDB1 repository.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic generation of probability maps of retinal lesions\",\"authors\":\"J. Rudas, Ricardo Toscano, G. Sánchez\",\"doi\":\"10.1109/STSIVA.2012.6340548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is the automatic generation of probability lesion maps from a color retinography analysis. A probability map determines the degree of belonging of each pixel in a given set. This process is based on three sequences of procedures: A set of attributes (contrasts enhancement zones), a suppression of artifacts obstacles and a setting of value of each pixel belong to a bright lesion, using probabilistic mapping by supervised classification. The validation of the results was carried out by comparing the subsequent binary map with prior probabilistic diagnosis. The results were analyzed by mean square error (MSE) between resulting diagnosis and diagnostic specialist. MSE was reached of 1.22 on a set of 40 images DIARECTDB1 repository.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是从彩色视网膜造影分析中自动生成概率病变图。概率图确定给定集合中每个像素的归属程度。该过程基于三个程序序列:一组属性(对比度增强区域),抑制伪影障碍和设置属于明亮病变的每个像素的值,使用监督分类的概率映射。通过比较随后的二值图与先验概率诊断来验证结果。结果分析均方误差(MSE)的结果诊断和诊断专家。在DIARECTDB1存储库的一组40个映像上达到了1.22的MSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic generation of probability maps of retinal lesions
The aim of this paper is the automatic generation of probability lesion maps from a color retinography analysis. A probability map determines the degree of belonging of each pixel in a given set. This process is based on three sequences of procedures: A set of attributes (contrasts enhancement zones), a suppression of artifacts obstacles and a setting of value of each pixel belong to a bright lesion, using probabilistic mapping by supervised classification. The validation of the results was carried out by comparing the subsequent binary map with prior probabilistic diagnosis. The results were analyzed by mean square error (MSE) between resulting diagnosis and diagnostic specialist. MSE was reached of 1.22 on a set of 40 images DIARECTDB1 repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constrained affinity matrix for spectral clustering: A basic semi-supervised extension Path planning applied to the mobile robot GBot Influence of structural similarities between sequences over ontology annotation proteins using BLASTP Technical analog-digital for segmentation of spectral images acquired with an accousto-optic system Development of a segmentation algorithm for ECG signals, simultaneously applying continuous and discrete wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1