制造系统分解

A. Kusiak, W. Chow
{"title":"制造系统分解","authors":"A. Kusiak, W. Chow","doi":"10.1109/56.20430","DOIUrl":null,"url":null,"abstract":"An approach to decomposition of manufacturing systems known as the group technology (GT) is surveyed. GT makes it possible to cluster machines into machine cells and parts into part families. There are two basic methods used for solving the GT problem: classification and modeling. Two variations of the classification method, visual and coding, are briefly discussed. The matrix and mathematical programming formulations of the GT problem are presented along with algorithms for solving them. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Decomposition of manufacturing systems\",\"authors\":\"A. Kusiak, W. Chow\",\"doi\":\"10.1109/56.20430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach to decomposition of manufacturing systems known as the group technology (GT) is surveyed. GT makes it possible to cluster machines into machine cells and parts into part families. There are two basic methods used for solving the GT problem: classification and modeling. Two variations of the classification method, visual and coding, are briefly discussed. The matrix and mathematical programming formulations of the GT problem are presented along with algorithms for solving them. >\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/56.20430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.20430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

研究了制造系统分解的一种方法,即成组技术。GT使机器集群成为机器单元,零件集群成为零件族成为可能。解决GT问题有两种基本方法:分类和建模。简要讨论了两种不同的分类方法:视觉分类和编码分类。给出了GT问题的矩阵和数学规划公式,并给出了求解这些问题的算法。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decomposition of manufacturing systems
An approach to decomposition of manufacturing systems known as the group technology (GT) is surveyed. GT makes it possible to cluster machines into machine cells and parts into part families. There are two basic methods used for solving the GT problem: classification and modeling. Two variations of the classification method, visual and coding, are briefly discussed. The matrix and mathematical programming formulations of the GT problem are presented along with algorithms for solving them. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omnidirectional supervisory control of a multilegged vehicle using periodic gaits Symbolic derivation of dynamic equations of motion for robot manipulators using Piogram symbolic method A group-theoretic approach to the computation of symbolic part relations Robot calibration and compensation Fixed-axis tool positioning with built-in global interference checking for NC path generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1