毛虫的条件作用和协方差

Sarah R. Allen, R. O'Donnell
{"title":"毛虫的条件作用和协方差","authors":"Sarah R. Allen, R. O'Donnell","doi":"10.1109/ITW.2015.7133115","DOIUrl":null,"url":null,"abstract":"Let X<sub>1</sub>, ..., X<sub>n</sub> be joint {±1}-valued random variables. It is known that conditioning on a random subset of O(1/ε<sup>2</sup>) of them reduces their average pairwise covariance to below ε (in expectation). We conjecture that O(1/ε<sup>2</sup>) can be improved to O(1/ε). The motivation for the problem and our conjectured improvement comes from the theory of global correlation rounding for convex relaxation hierarchies. We suggest attempting the conjecture in the case that X<sub>1</sub>, ..., X<sub>n</sub> are the leaves of an information flow tree. We prove the conjecture in the case that the information flow tree is a caterpillar graph (similar to a two-state hidden Markov model).","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Conditioning and covariance on caterpillars\",\"authors\":\"Sarah R. Allen, R. O'Donnell\",\"doi\":\"10.1109/ITW.2015.7133115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X<sub>1</sub>, ..., X<sub>n</sub> be joint {±1}-valued random variables. It is known that conditioning on a random subset of O(1/ε<sup>2</sup>) of them reduces their average pairwise covariance to below ε (in expectation). We conjecture that O(1/ε<sup>2</sup>) can be improved to O(1/ε). The motivation for the problem and our conjectured improvement comes from the theory of global correlation rounding for convex relaxation hierarchies. We suggest attempting the conjecture in the case that X<sub>1</sub>, ..., X<sub>n</sub> are the leaves of an information flow tree. We prove the conjecture in the case that the information flow tree is a caterpillar graph (similar to a two-state hidden Markov model).\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设X1,…, Xn为联合{±1}值随机变量。已知,对其中的O(1/ε2)个随机子集施加条件,可使它们的平均成对协方差低于ε(期望)。我们推测O(1/ε2)可以改进为O(1/ε)。问题的动机和我们推测的改进来自凸松弛层次的全局相关舍入理论。我们建议在X1,…的情况下尝试这个猜想。, Xn是信息流树的叶子。在信息流树为履带图(类似于两态隐马尔可夫模型)的情况下,证明了该猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditioning and covariance on caterpillars
Let X1, ..., Xn be joint {±1}-valued random variables. It is known that conditioning on a random subset of O(1/ε2) of them reduces their average pairwise covariance to below ε (in expectation). We conjecture that O(1/ε2) can be improved to O(1/ε). The motivation for the problem and our conjectured improvement comes from the theory of global correlation rounding for convex relaxation hierarchies. We suggest attempting the conjecture in the case that X1, ..., Xn are the leaves of an information flow tree. We prove the conjecture in the case that the information flow tree is a caterpillar graph (similar to a two-state hidden Markov model).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degraded broadcast channel: Secrecy outside of a bounded range On compute-and-forward with feedback On the capacity of multihop device-to-device caching networks Lattice index coding for the broadcast channel On the transmission of a bivariate Gaussian source over the Gaussian broadcast channel with feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1