你能学会吗?:可能!在R中开发学习分析工具

Giorgio Maria Di Nunzio
{"title":"你能学会吗?:可能!在R中开发学习分析工具","authors":"Giorgio Maria Di Nunzio","doi":"10.1145/2910896.2925437","DOIUrl":null,"url":null,"abstract":"Automatic text categorization is an effective way to organize large text datasets in Digital Libraries (DL). However, most of the available machine learning tools are complex and go beyond the scope of what a digital library curator need or is able to do in order to classify the objects of a DL. Drawing inspiration from the field of Learning Analytics and Interactive Machine Learning, we design and implement visual interactive classifiers that are intuitive to train and easy to use. In this poster, we present an interactive Web application in R that allows users to use text classifier in an innovative way. The source code of the application is available at the following link: https://github.com/gmdn/educational-data-mining","PeriodicalId":175288,"journal":{"name":"Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Can you learn it?: Probably! Developing Learning Analytics Tools in R\",\"authors\":\"Giorgio Maria Di Nunzio\",\"doi\":\"10.1145/2910896.2925437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic text categorization is an effective way to organize large text datasets in Digital Libraries (DL). However, most of the available machine learning tools are complex and go beyond the scope of what a digital library curator need or is able to do in order to classify the objects of a DL. Drawing inspiration from the field of Learning Analytics and Interactive Machine Learning, we design and implement visual interactive classifiers that are intuitive to train and easy to use. In this poster, we present an interactive Web application in R that allows users to use text classifier in an innovative way. The source code of the application is available at the following link: https://github.com/gmdn/educational-data-mining\",\"PeriodicalId\":175288,\"journal\":{\"name\":\"Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2910896.2925437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动文本分类是数字图书馆组织大型文本数据集的有效方法。然而,大多数可用的机器学习工具都很复杂,超出了数字图书馆馆长需要或能够做的范围,以便对DL的对象进行分类。从学习分析和交互式机器学习领域汲取灵感,我们设计并实现了直观的训练和易于使用的可视化交互式分类器。在这张海报中,我们展示了一个用R编写的交互式Web应用程序,它允许用户以一种创新的方式使用文本分类器。该应用程序的源代码可从以下链接获得:https://github.com/gmdn/educational-data-mining
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can you learn it?: Probably! Developing Learning Analytics Tools in R
Automatic text categorization is an effective way to organize large text datasets in Digital Libraries (DL). However, most of the available machine learning tools are complex and go beyond the scope of what a digital library curator need or is able to do in order to classify the objects of a DL. Drawing inspiration from the field of Learning Analytics and Interactive Machine Learning, we design and implement visual interactive classifiers that are intuitive to train and easy to use. In this poster, we present an interactive Web application in R that allows users to use text classifier in an innovative way. The source code of the application is available at the following link: https://github.com/gmdn/educational-data-mining
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2016) Can you learn it?: Probably! Developing Learning Analytics Tools in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1