De-Shiun Fu, Ying-Zhih Chaung, Yen-Hung Lin, Yih-Lang Li
{"title":"具有共线约束的拓扑驱动单元布局迁移","authors":"De-Shiun Fu, Ying-Zhih Chaung, Yen-Hung Lin, Yih-Lang Li","doi":"10.1109/ICCD.2009.5413118","DOIUrl":null,"url":null,"abstract":"Traditional layout migration focuses on area minimization, thus suffered wire distortion, which caused loss of layout topology. A migrated layout inheriting original topology owns original design intention and predictable property, such as wire length which determines the path delay importantly. This work presents a new rectangular topological layout to preserve layout topology and combine its flexibility of handling wires with traditional scan-line based compaction algorithm for area minimization. The proposed migration flow contains devices and wires extraction, topological layout construction, unidirectional compression combining scan-line algorithm with collinear equation solver, and wire restoration. Experimental results show that cell topology is well preserved, and a several times runtime speedup is achieved as compared with recent migration research based on ILP (integer linear programming) formulation.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Topology-driven cell layout migration with collinear constraints\",\"authors\":\"De-Shiun Fu, Ying-Zhih Chaung, Yen-Hung Lin, Yih-Lang Li\",\"doi\":\"10.1109/ICCD.2009.5413118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional layout migration focuses on area minimization, thus suffered wire distortion, which caused loss of layout topology. A migrated layout inheriting original topology owns original design intention and predictable property, such as wire length which determines the path delay importantly. This work presents a new rectangular topological layout to preserve layout topology and combine its flexibility of handling wires with traditional scan-line based compaction algorithm for area minimization. The proposed migration flow contains devices and wires extraction, topological layout construction, unidirectional compression combining scan-line algorithm with collinear equation solver, and wire restoration. Experimental results show that cell topology is well preserved, and a several times runtime speedup is achieved as compared with recent migration research based on ILP (integer linear programming) formulation.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology-driven cell layout migration with collinear constraints
Traditional layout migration focuses on area minimization, thus suffered wire distortion, which caused loss of layout topology. A migrated layout inheriting original topology owns original design intention and predictable property, such as wire length which determines the path delay importantly. This work presents a new rectangular topological layout to preserve layout topology and combine its flexibility of handling wires with traditional scan-line based compaction algorithm for area minimization. The proposed migration flow contains devices and wires extraction, topological layout construction, unidirectional compression combining scan-line algorithm with collinear equation solver, and wire restoration. Experimental results show that cell topology is well preserved, and a several times runtime speedup is achieved as compared with recent migration research based on ILP (integer linear programming) formulation.