大型批量生产中支持机器学习的跨机器控制回路的概念

Moritz Meiners, J. Franke
{"title":"大型批量生产中支持机器学习的跨机器控制回路的概念","authors":"Moritz Meiners, J. Franke","doi":"10.1109/ICMIMT49010.2020.9041239","DOIUrl":null,"url":null,"abstract":"With the advancing digitalization of production plants, it becomes possible to use process data across machine boundaries. A machine can adapt its parameters to another machine-measured parameter to increase product quality. The present paper describes the design of an inter-machine control loop with machine learning techniques in order to improve the final quality output. The production ramp-up represents a special application case for this since at this point of time there is only limited knowledge about cause-effect relationships. For this purpose, the paper presents a method for analyzing these interrelations. On the one hand, simple linear regression is used to analyze the linear relationships; on the other hand, machine learning algorithms are used to analyze non-linear relationships. Two independent control loops form the overall control loop, which is capable of deriving holistic prognoses on upstream or downstream process effects.","PeriodicalId":377249,"journal":{"name":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Concept of a Machine Learning supported Cross-Machine Control Loop in the Ramp-Up of Large Series Manufacturing\",\"authors\":\"Moritz Meiners, J. Franke\",\"doi\":\"10.1109/ICMIMT49010.2020.9041239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancing digitalization of production plants, it becomes possible to use process data across machine boundaries. A machine can adapt its parameters to another machine-measured parameter to increase product quality. The present paper describes the design of an inter-machine control loop with machine learning techniques in order to improve the final quality output. The production ramp-up represents a special application case for this since at this point of time there is only limited knowledge about cause-effect relationships. For this purpose, the paper presents a method for analyzing these interrelations. On the one hand, simple linear regression is used to analyze the linear relationships; on the other hand, machine learning algorithms are used to analyze non-linear relationships. Two independent control loops form the overall control loop, which is capable of deriving holistic prognoses on upstream or downstream process effects.\",\"PeriodicalId\":377249,\"journal\":{\"name\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIMT49010.2020.9041239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIMT49010.2020.9041239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着生产工厂数字化的推进,跨机器边界使用过程数据成为可能。一台机器可以使其参数适应另一台机器测量的参数,以提高产品质量。本文描述了一个机器间控制回路的设计与机器学习技术,以提高最终的质量输出。产量上升代表了一个特殊的应用案例,因为在这一点上,关于因果关系的知识是有限的。为此,本文提出了一种分析这些相互关系的方法。一方面,采用简单线性回归分析线性关系;另一方面,机器学习算法用于分析非线性关系。两个独立的控制回路构成整体控制回路,能够对上游或下游过程的影响进行整体预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concept of a Machine Learning supported Cross-Machine Control Loop in the Ramp-Up of Large Series Manufacturing
With the advancing digitalization of production plants, it becomes possible to use process data across machine boundaries. A machine can adapt its parameters to another machine-measured parameter to increase product quality. The present paper describes the design of an inter-machine control loop with machine learning techniques in order to improve the final quality output. The production ramp-up represents a special application case for this since at this point of time there is only limited knowledge about cause-effect relationships. For this purpose, the paper presents a method for analyzing these interrelations. On the one hand, simple linear regression is used to analyze the linear relationships; on the other hand, machine learning algorithms are used to analyze non-linear relationships. Two independent control loops form the overall control loop, which is capable of deriving holistic prognoses on upstream or downstream process effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovative Solutions for the Covering Process in the Manufacturing of Wire Harnesses to Increase the Automation Degree Sustainable Face-Machining of a Ti-6Al-4V Rod under Cooling Environments of Liquid Nitrogen and CO2 Snow [Title page] ICMIMT 2020 Conference Committees Comparative study of Hydrogen yield from magnesium waste products in Acetic acid and Iron chloride solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1