一个实时可实现的神经网络

J.E. Ngolediage, R.N.G. Naguib, S. Dlay
{"title":"一个实时可实现的神经网络","authors":"J.E. Ngolediage, R.N.G. Naguib, S. Dlay","doi":"10.1109/ICNN.1994.374543","DOIUrl":null,"url":null,"abstract":"This paper describes a real-time implementable algorithm that takes advantage of the Lyapunov function, which guarantees an asymptotic behaviour of the solutions to differential equations. The algorithm is designed for feedforward neural networks. Unlike conventional backpropagation, it does not require the suite of derivatives to be propagated from the top layer to the bottom one. Consequently, the amount of circuitry required for an analogue CMOS implementation is minimal. In addition, each unit in the network has its output fed back to itself across a delay element. Results from an HSPICE simulation of the 2.4 micron CMOS architecture are presented.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"54 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real-time implementable neural network\",\"authors\":\"J.E. Ngolediage, R.N.G. Naguib, S. Dlay\",\"doi\":\"10.1109/ICNN.1994.374543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a real-time implementable algorithm that takes advantage of the Lyapunov function, which guarantees an asymptotic behaviour of the solutions to differential equations. The algorithm is designed for feedforward neural networks. Unlike conventional backpropagation, it does not require the suite of derivatives to be propagated from the top layer to the bottom one. Consequently, the amount of circuitry required for an analogue CMOS implementation is minimal. In addition, each unit in the network has its output fed back to itself across a delay element. Results from an HSPICE simulation of the 2.4 micron CMOS architecture are presented.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"54 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种利用Lyapunov函数保证微分方程解的渐近性的实时可实现算法。该算法是针对前馈神经网络设计的。与传统的反向传播不同,它不需要将一组导数从顶层传播到底层。因此,模拟CMOS实现所需的电路量是最小的。此外,网络中的每个单元的输出都通过一个延迟单元反馈给自己。本文给出了2.4微米CMOS结构的HSPICE仿真结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real-time implementable neural network
This paper describes a real-time implementable algorithm that takes advantage of the Lyapunov function, which guarantees an asymptotic behaviour of the solutions to differential equations. The algorithm is designed for feedforward neural networks. Unlike conventional backpropagation, it does not require the suite of derivatives to be propagated from the top layer to the bottom one. Consequently, the amount of circuitry required for an analogue CMOS implementation is minimal. In addition, each unit in the network has its output fed back to itself across a delay element. Results from an HSPICE simulation of the 2.4 micron CMOS architecture are presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1