{"title":"基于计算资源共享的下行云局域网动态无线电协作","authors":"Tuyen X. Tran, D. Pompili","doi":"10.1109/MASS.2015.21","DOIUrl":null,"url":null,"abstract":"A novel dynamic radio-cooperation strategy is proposed for Cloud Radio Access Networks (C-RANs) consisting of multiple Remote Radio Heads (RRHs) connected to a central Virtual Base Station (VBS) pool. In particular, the key capabilities of C-RANs in computing-resource sharing and real-time communication among the VBSs are leveraged to design a joint dynamic radio clustering and cooperative beam forming scheme that maximizes the downlink weighted sum-rate system utility (WSRSU). Due to the combinatorial nature of the radio clustering process and the non-convexity of the cooperative beam forming design, the underlying optimization problem is NP-hard, and is extremely difficult to solve for a large network. Our approach aims for a suboptimal solution by transforming the original problem into a Mixed-Integer Second-Order Cone Program (MI-SOCP), which can be solved efficiently using a proposed iterative algorithm. Numerical simulation results show that our low-complexity algorithm provides close-to-optimal performance in terms of WSRSU while significantly outperforming conventional radio clustering and beam forming schemes. Additionally, the results also demonstrate the significant improvement in computing-resource utilization of C-RANs over traditional RANs with distributed computing resources.","PeriodicalId":436496,"journal":{"name":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Dynamic Radio Cooperation for Downlink Cloud-RANs with Computing Resource Sharing\",\"authors\":\"Tuyen X. Tran, D. Pompili\",\"doi\":\"10.1109/MASS.2015.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel dynamic radio-cooperation strategy is proposed for Cloud Radio Access Networks (C-RANs) consisting of multiple Remote Radio Heads (RRHs) connected to a central Virtual Base Station (VBS) pool. In particular, the key capabilities of C-RANs in computing-resource sharing and real-time communication among the VBSs are leveraged to design a joint dynamic radio clustering and cooperative beam forming scheme that maximizes the downlink weighted sum-rate system utility (WSRSU). Due to the combinatorial nature of the radio clustering process and the non-convexity of the cooperative beam forming design, the underlying optimization problem is NP-hard, and is extremely difficult to solve for a large network. Our approach aims for a suboptimal solution by transforming the original problem into a Mixed-Integer Second-Order Cone Program (MI-SOCP), which can be solved efficiently using a proposed iterative algorithm. Numerical simulation results show that our low-complexity algorithm provides close-to-optimal performance in terms of WSRSU while significantly outperforming conventional radio clustering and beam forming schemes. Additionally, the results also demonstrate the significant improvement in computing-resource utilization of C-RANs over traditional RANs with distributed computing resources.\",\"PeriodicalId\":436496,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASS.2015.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Radio Cooperation for Downlink Cloud-RANs with Computing Resource Sharing
A novel dynamic radio-cooperation strategy is proposed for Cloud Radio Access Networks (C-RANs) consisting of multiple Remote Radio Heads (RRHs) connected to a central Virtual Base Station (VBS) pool. In particular, the key capabilities of C-RANs in computing-resource sharing and real-time communication among the VBSs are leveraged to design a joint dynamic radio clustering and cooperative beam forming scheme that maximizes the downlink weighted sum-rate system utility (WSRSU). Due to the combinatorial nature of the radio clustering process and the non-convexity of the cooperative beam forming design, the underlying optimization problem is NP-hard, and is extremely difficult to solve for a large network. Our approach aims for a suboptimal solution by transforming the original problem into a Mixed-Integer Second-Order Cone Program (MI-SOCP), which can be solved efficiently using a proposed iterative algorithm. Numerical simulation results show that our low-complexity algorithm provides close-to-optimal performance in terms of WSRSU while significantly outperforming conventional radio clustering and beam forming schemes. Additionally, the results also demonstrate the significant improvement in computing-resource utilization of C-RANs over traditional RANs with distributed computing resources.