T. K. Tan, A. Raghunathan, G. Lakshminarayana, N. Jha
{"title":"高级软件能量宏建模","authors":"T. K. Tan, A. Raghunathan, G. Lakshminarayana, N. Jha","doi":"10.1145/378239.379033","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient and accurate high-level software energy estimation methodology using the concept of characterization-based macro-modeling. In characterization-based macro-modeling, a function or sub-routine is characterized using an accurate lower-level energy model of the target processor, to construct a macro-model that relates the energy consumed in the function under consideration to various parameters that can be easily observed or calculated from a high-level programming language description. The constructed macro-models eliminate the need for significantly slower instruction-level interpretation or hardware simulation that is required in conventional approaches to software energy estimation. We present two different approaches to macro-modeling for embedded software that offer distinct efficiency-accuracy characteristics: (i) complexity-based macro-modeling, where the variables that determine the algorithmic complexity of the function under consideration are used as macro-modeling parameters, and (ii) profiling-based macro-modeling, where internal profiling statistics for the functions are used as parameters in the energy macro-models. We have experimentally validated our software energy macro-modeling techniques on a wide range of embedded software routines and two different target processor architectures. Our experiments demonstrate that high-level macro-models constructed using the proposed techniques are able to estimate the energy consumption to within 95% accuracy on the average, while commanding speedups of one to five orders-of-magnitude over current instruction-level and architectural energy estimation techniques.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"High-level software energy macro-modeling\",\"authors\":\"T. K. Tan, A. Raghunathan, G. Lakshminarayana, N. Jha\",\"doi\":\"10.1145/378239.379033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient and accurate high-level software energy estimation methodology using the concept of characterization-based macro-modeling. In characterization-based macro-modeling, a function or sub-routine is characterized using an accurate lower-level energy model of the target processor, to construct a macro-model that relates the energy consumed in the function under consideration to various parameters that can be easily observed or calculated from a high-level programming language description. The constructed macro-models eliminate the need for significantly slower instruction-level interpretation or hardware simulation that is required in conventional approaches to software energy estimation. We present two different approaches to macro-modeling for embedded software that offer distinct efficiency-accuracy characteristics: (i) complexity-based macro-modeling, where the variables that determine the algorithmic complexity of the function under consideration are used as macro-modeling parameters, and (ii) profiling-based macro-modeling, where internal profiling statistics for the functions are used as parameters in the energy macro-models. We have experimentally validated our software energy macro-modeling techniques on a wide range of embedded software routines and two different target processor architectures. Our experiments demonstrate that high-level macro-models constructed using the proposed techniques are able to estimate the energy consumption to within 95% accuracy on the average, while commanding speedups of one to five orders-of-magnitude over current instruction-level and architectural energy estimation techniques.\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.379033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents an efficient and accurate high-level software energy estimation methodology using the concept of characterization-based macro-modeling. In characterization-based macro-modeling, a function or sub-routine is characterized using an accurate lower-level energy model of the target processor, to construct a macro-model that relates the energy consumed in the function under consideration to various parameters that can be easily observed or calculated from a high-level programming language description. The constructed macro-models eliminate the need for significantly slower instruction-level interpretation or hardware simulation that is required in conventional approaches to software energy estimation. We present two different approaches to macro-modeling for embedded software that offer distinct efficiency-accuracy characteristics: (i) complexity-based macro-modeling, where the variables that determine the algorithmic complexity of the function under consideration are used as macro-modeling parameters, and (ii) profiling-based macro-modeling, where internal profiling statistics for the functions are used as parameters in the energy macro-models. We have experimentally validated our software energy macro-modeling techniques on a wide range of embedded software routines and two different target processor architectures. Our experiments demonstrate that high-level macro-models constructed using the proposed techniques are able to estimate the energy consumption to within 95% accuracy on the average, while commanding speedups of one to five orders-of-magnitude over current instruction-level and architectural energy estimation techniques.