纳米卫星卫星间链路的宽带FD天线拓扑

A. Pen, M. Roy, R. Lababidi, D. L. Jeune, A. Pérennec, J. Issler, K. Elis, A. Gay, J.-H. Corre
{"title":"纳米卫星卫星间链路的宽带FD天线拓扑","authors":"A. Pen, M. Roy, R. Lababidi, D. L. Jeune, A. Pérennec, J. Issler, K. Elis, A. Gay, J.-H. Corre","doi":"10.1109/newcas49341.2020.9159778","DOIUrl":null,"url":null,"abstract":"This paper presents and compares four different antenna topologies dedicated to Full-Duplex (FD) applications. The proposed architectures are able to operate simultaneously for transmitting TX and receiving RX radiating elements along broadside direction, contrarily to most of state of the art FD RF front-ends that also rely on destructive wave's concept to get Self-Interference Cancellation (SIC). The four prototypes make use of three SIC stages and the common first level is obtained using orthogonal linear polarization between TX and RX. Step-by-step improvements are introduced from one to another topology in order to increase the SIC level and to reduce both side lobe levels and antenna size. Simulated and experimental results are provided, compared and discussed at the center frequency of 2.4 GHz as a proof of concept. The isolation obtained between TX and RX paths is higher than 80 dB in simulation and 60 dB in measurement. These results pave the way to an implementation of a high gain Full-Duplex Ka-band antenna for Nanosat Intersatellite Link","PeriodicalId":135163,"journal":{"name":"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Broadside FD Antenna Topologies for Nanosat Intersatellite Link\",\"authors\":\"A. Pen, M. Roy, R. Lababidi, D. L. Jeune, A. Pérennec, J. Issler, K. Elis, A. Gay, J.-H. Corre\",\"doi\":\"10.1109/newcas49341.2020.9159778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and compares four different antenna topologies dedicated to Full-Duplex (FD) applications. The proposed architectures are able to operate simultaneously for transmitting TX and receiving RX radiating elements along broadside direction, contrarily to most of state of the art FD RF front-ends that also rely on destructive wave's concept to get Self-Interference Cancellation (SIC). The four prototypes make use of three SIC stages and the common first level is obtained using orthogonal linear polarization between TX and RX. Step-by-step improvements are introduced from one to another topology in order to increase the SIC level and to reduce both side lobe levels and antenna size. Simulated and experimental results are provided, compared and discussed at the center frequency of 2.4 GHz as a proof of concept. The isolation obtained between TX and RX paths is higher than 80 dB in simulation and 60 dB in measurement. These results pave the way to an implementation of a high gain Full-Duplex Ka-band antenna for Nanosat Intersatellite Link\",\"PeriodicalId\":135163,\"journal\":{\"name\":\"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/newcas49341.2020.9159778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/newcas49341.2020.9159778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍并比较了四种不同的全双工(FD)应用天线拓扑结构。所提出的架构能够同时工作,沿宽方向发射TX和接收RX辐射元件,这与大多数最先进的FD RF前端相反,这些前端也依赖于破坏性波的概念来获得自干扰抵消(SIC)。这四个原型采用了三个SIC级,通过TX和RX之间的正交线性偏振得到了共同的一级。为了提高SIC电平并减小旁瓣电平和天线尺寸,从一个拓扑逐步改进到另一个拓扑。给出了在2.4 GHz中心频率下的仿真和实验结果,并进行了比较和讨论,作为概念验证。仿真得到的TX和RX路径之间的隔离度高于80 dB,测量结果高于60 dB。这些结果为实现用于纳米卫星间链路的高增益全双工ka波段天线铺平了道路
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Broadside FD Antenna Topologies for Nanosat Intersatellite Link
This paper presents and compares four different antenna topologies dedicated to Full-Duplex (FD) applications. The proposed architectures are able to operate simultaneously for transmitting TX and receiving RX radiating elements along broadside direction, contrarily to most of state of the art FD RF front-ends that also rely on destructive wave's concept to get Self-Interference Cancellation (SIC). The four prototypes make use of three SIC stages and the common first level is obtained using orthogonal linear polarization between TX and RX. Step-by-step improvements are introduced from one to another topology in order to increase the SIC level and to reduce both side lobe levels and antenna size. Simulated and experimental results are provided, compared and discussed at the center frequency of 2.4 GHz as a proof of concept. The isolation obtained between TX and RX paths is higher than 80 dB in simulation and 60 dB in measurement. These results pave the way to an implementation of a high gain Full-Duplex Ka-band antenna for Nanosat Intersatellite Link
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Networks for Epileptic Seizure Prediction: Algorithms and Hardware Implementation Cascaded tunable distributed amplifiers for serial optical links: Some design rules Motor Task Learning in Brain Computer Interfaces using Time-Dependent Regularized Common Spatial Patterns and Residual Networks Towards GaN500-based High Temperature ICs: Characterization and Modeling up to 600°C A Current Reference with high Robustness to Process and Supply Voltage Variations unaffected by Body Effect upon Threshold Voltage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1