应用人工智能方法探讨后窝出血的死亡率

Hui-Chu Chiu, Yao-Hsien Lee, Chih-Wei Wang, Deng-Yiv Chiu, C. Juan, Wei-Jun Chang
{"title":"应用人工智能方法探讨后窝出血的死亡率","authors":"Hui-Chu Chiu, Yao-Hsien Lee, Chih-Wei Wang, Deng-Yiv Chiu, C. Juan, Wei-Jun Chang","doi":"10.1109/ICAWST.2017.8256524","DOIUrl":null,"url":null,"abstract":"Intracranial hemorrhage refers to bleeding that occurs within the skull. Several factors have been attributed to the mortality of posterior fossa hemorrhage, including clinical presentations such as Glascow coma scale, obstructive hydrocephalus, imaging features such as hematoma size, intraventricular hemorrhage, brain stem compression, and combined factor such as ICH score. First, this study attempts to identify the most influential factor combinations to explore mortality of posterior fossa hemorrhage. We will adopt appropriate algorithms to cluster the data so that the patient data with similar features are appropriately clustered. And we will build a corresponding prediction model for each cluster data to construct a multiple prediction classifier.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To explore mortality of posterior fossa hemorrhage with artificial intelligence approach\",\"authors\":\"Hui-Chu Chiu, Yao-Hsien Lee, Chih-Wei Wang, Deng-Yiv Chiu, C. Juan, Wei-Jun Chang\",\"doi\":\"10.1109/ICAWST.2017.8256524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracranial hemorrhage refers to bleeding that occurs within the skull. Several factors have been attributed to the mortality of posterior fossa hemorrhage, including clinical presentations such as Glascow coma scale, obstructive hydrocephalus, imaging features such as hematoma size, intraventricular hemorrhage, brain stem compression, and combined factor such as ICH score. First, this study attempts to identify the most influential factor combinations to explore mortality of posterior fossa hemorrhage. We will adopt appropriate algorithms to cluster the data so that the patient data with similar features are appropriately clustered. And we will build a corresponding prediction model for each cluster data to construct a multiple prediction classifier.\",\"PeriodicalId\":378618,\"journal\":{\"name\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2017.8256524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

颅内出血是指发生在颅骨内的出血。后窝出血的死亡率有几个因素,包括临床表现如Glascow昏迷评分、梗阻性脑积水、影像学表现如血肿大小、脑室内出血、脑干压迫等,以及ICH评分等综合因素。首先,本研究试图确定影响后窝出血死亡率的最重要因素组合。我们将采用适当的算法对数据进行聚类,使具有相似特征的患者数据得到适当的聚类。我们将为每个聚类数据建立相应的预测模型,从而构建一个多重预测分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
To explore mortality of posterior fossa hemorrhage with artificial intelligence approach
Intracranial hemorrhage refers to bleeding that occurs within the skull. Several factors have been attributed to the mortality of posterior fossa hemorrhage, including clinical presentations such as Glascow coma scale, obstructive hydrocephalus, imaging features such as hematoma size, intraventricular hemorrhage, brain stem compression, and combined factor such as ICH score. First, this study attempts to identify the most influential factor combinations to explore mortality of posterior fossa hemorrhage. We will adopt appropriate algorithms to cluster the data so that the patient data with similar features are appropriately clustered. And we will build a corresponding prediction model for each cluster data to construct a multiple prediction classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1