反卷积压缩感知译码改进小波变换

Dong Liu, Xiaoyan Sun, Feng Wu
{"title":"反卷积压缩感知译码改进小波变换","authors":"Dong Liu, Xiaoyan Sun, Feng Wu","doi":"10.1109/DCC.2009.19","DOIUrl":null,"url":null,"abstract":"By virtue of compressive sensing (CS) that can recover sparse signals from a few linear and non-adaptive measurements, we propose an alternative decoding method for inverse wavelet transform when only partial coefficients are available. Classic CS decoding such as $l_1$-minimization indeed provides better reconstruction of sparse signals than inverse wavelet transform. Since many natural images are not sparse, we propose to further improve CS decoding from the Bayesian point of view. Specifically, as wavelet transform can be described as convolution, we present an iterative deconvolution method for CS decoding in the case of partial wavelet coefficients. Experimental results demonstrate the efficiency of our method. We conclude that such findings indicate promising applications in compression.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving Inverse Wavelet Transform by Compressive Sensing Decoding with Deconvolution\",\"authors\":\"Dong Liu, Xiaoyan Sun, Feng Wu\",\"doi\":\"10.1109/DCC.2009.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By virtue of compressive sensing (CS) that can recover sparse signals from a few linear and non-adaptive measurements, we propose an alternative decoding method for inverse wavelet transform when only partial coefficients are available. Classic CS decoding such as $l_1$-minimization indeed provides better reconstruction of sparse signals than inverse wavelet transform. Since many natural images are not sparse, we propose to further improve CS decoding from the Bayesian point of view. Specifically, as wavelet transform can be described as convolution, we present an iterative deconvolution method for CS decoding in the case of partial wavelet coefficients. Experimental results demonstrate the efficiency of our method. We conclude that such findings indicate promising applications in compression.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用压缩感知(CS)可以从少量线性和非自适应测量中恢复稀疏信号的特性,我们提出了一种只有部分系数可用的反小波变换译码方法。经典的CS解码,如$l_1$最小化,确实比小波逆变换提供了更好的稀疏信号重构。由于许多自然图像不是稀疏的,我们建议从贝叶斯的角度进一步改进CS解码。具体来说,由于小波变换可以被描述为卷积,我们提出了一种迭代反卷积方法,用于部分小波系数情况下的CS解码。实验结果证明了该方法的有效性。我们的结论是,这些发现表明有希望的应用在压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Inverse Wavelet Transform by Compressive Sensing Decoding with Deconvolution
By virtue of compressive sensing (CS) that can recover sparse signals from a few linear and non-adaptive measurements, we propose an alternative decoding method for inverse wavelet transform when only partial coefficients are available. Classic CS decoding such as $l_1$-minimization indeed provides better reconstruction of sparse signals than inverse wavelet transform. Since many natural images are not sparse, we propose to further improve CS decoding from the Bayesian point of view. Specifically, as wavelet transform can be described as convolution, we present an iterative deconvolution method for CS decoding in the case of partial wavelet coefficients. Experimental results demonstrate the efficiency of our method. We conclude that such findings indicate promising applications in compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1