基于调制函数的拉格朗日系统自适应速度估计

Matti Noack, J. Reger, J. Jouffroy
{"title":"基于调制函数的拉格朗日系统自适应速度估计","authors":"Matti Noack, J. Reger, J. Jouffroy","doi":"10.1109/ICM54990.2023.10101935","DOIUrl":null,"url":null,"abstract":"Information about the internal position and velocity of a robotic system is crucial for its control. Especially, under uncertain models, changing dynamic parameters and noisy position measurement signals, an adaptive differentiation is needed combining structural knowledge of the model with adequate filtering of the sensor data. To this end, the Modulating Function Method is applied to the Lagrange formulation of the robotic system to preserve the structure while enabling to incorporate nonlinear terms into the integral transform methodology. Different types of Modulating Functions and the function projection approach are used to develop a simultaneous parameter and state estimation procedure for the general structure of open kinematic chains. The developed algorithm for an adaptive velocity estimation is capable of robustly reconstructing the generalized state and consists of an efficient Finite Impulse Response (FIR) filter type implementation. The resulting architecture is demonstrated on a two-link robot setup.","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Velocity Estimation for Lagrangian Systems using Modulating Functions\",\"authors\":\"Matti Noack, J. Reger, J. Jouffroy\",\"doi\":\"10.1109/ICM54990.2023.10101935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information about the internal position and velocity of a robotic system is crucial for its control. Especially, under uncertain models, changing dynamic parameters and noisy position measurement signals, an adaptive differentiation is needed combining structural knowledge of the model with adequate filtering of the sensor data. To this end, the Modulating Function Method is applied to the Lagrange formulation of the robotic system to preserve the structure while enabling to incorporate nonlinear terms into the integral transform methodology. Different types of Modulating Functions and the function projection approach are used to develop a simultaneous parameter and state estimation procedure for the general structure of open kinematic chains. The developed algorithm for an adaptive velocity estimation is capable of robustly reconstructing the generalized state and consists of an efficient Finite Impulse Response (FIR) filter type implementation. The resulting architecture is demonstrated on a two-link robot setup.\",\"PeriodicalId\":416176,\"journal\":{\"name\":\"2023 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM54990.2023.10101935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10101935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于机器人系统内部位置和速度的信息对其控制至关重要。特别是在不确定模型、动态参数变化和位置测量信号有噪声的情况下,需要将模型的结构知识与传感器数据的适当滤波相结合,进行自适应微分。为此,调制函数法应用于机器人系统的拉格朗日公式,以保持结构,同时能够将非线性项纳入积分变换方法。利用不同类型的调制函数和函数投影方法,建立了开放运动链一般结构的同时参数和状态估计方法。所开发的自适应速度估计算法能够鲁棒地重建广义状态,并由有效的有限脉冲响应(FIR)滤波器类型实现组成。所得到的体系结构在一个双连杆机器人设置上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Velocity Estimation for Lagrangian Systems using Modulating Functions
Information about the internal position and velocity of a robotic system is crucial for its control. Especially, under uncertain models, changing dynamic parameters and noisy position measurement signals, an adaptive differentiation is needed combining structural knowledge of the model with adequate filtering of the sensor data. To this end, the Modulating Function Method is applied to the Lagrange formulation of the robotic system to preserve the structure while enabling to incorporate nonlinear terms into the integral transform methodology. Different types of Modulating Functions and the function projection approach are used to develop a simultaneous parameter and state estimation procedure for the general structure of open kinematic chains. The developed algorithm for an adaptive velocity estimation is capable of robustly reconstructing the generalized state and consists of an efficient Finite Impulse Response (FIR) filter type implementation. The resulting architecture is demonstrated on a two-link robot setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sliding Mode-Based Design of Unified Force and Position Control for Series Elastic Actuator Frequency-domain Analysis for Infinite Resets Systems* Intelligent Static Calibration of Industrial Robots using Artificial Bee Colony Algorithm Energy Localization in Spring-Motor Coupling System by Switching Mass Control Drowsy Driver Detection System For Poor Light Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1