一种基于删除参与者索引的有效关键字提取方法

Yan Tang, R. Kan
{"title":"一种基于删除参与者索引的有效关键字提取方法","authors":"Yan Tang, R. Kan","doi":"10.1109/WISM.2010.176","DOIUrl":null,"url":null,"abstract":"Keywords Extraction plays a very important role in the text-mining domain, since the keywords can represent the asserted main point in a document. Based on the term network and deleting actor index, an effective keywords extraction algorithm is proposed to extract high frequent terms as well as important terms with low frequencies. The experiment results support the conclusion.","PeriodicalId":119569,"journal":{"name":"2010 International Conference on Web Information Systems and Mining","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Effective Keywords Extraction Method Based on Deleting Actor Index\",\"authors\":\"Yan Tang, R. Kan\",\"doi\":\"10.1109/WISM.2010.176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keywords Extraction plays a very important role in the text-mining domain, since the keywords can represent the asserted main point in a document. Based on the term network and deleting actor index, an effective keywords extraction algorithm is proposed to extract high frequent terms as well as important terms with low frequencies. The experiment results support the conclusion.\",\"PeriodicalId\":119569,\"journal\":{\"name\":\"2010 International Conference on Web Information Systems and Mining\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Web Information Systems and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISM.2010.176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Web Information Systems and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISM.2010.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关键字提取在文本挖掘领域中起着非常重要的作用,因为关键字可以表示文档中断言的要点。基于术语网络和删除参与者索引,提出了一种有效的关键词提取算法,以提取高频术语和低频重要术语。实验结果支持了这一结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Keywords Extraction Method Based on Deleting Actor Index
Keywords Extraction plays a very important role in the text-mining domain, since the keywords can represent the asserted main point in a document. Based on the term network and deleting actor index, an effective keywords extraction algorithm is proposed to extract high frequent terms as well as important terms with low frequencies. The experiment results support the conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Simulation of Micronized Re-burning (MCR) Organic Acid Salt Used as an Accelerator The Research of the Grouping Algorithm for Chinese Learners Based on Transitive Closure Research on Multi-colony Diploid Genetic Algorithm for Production Logistics Scheduling Optimization Application of Second Order Diagonal Recurrent Neural Network in Nonlinear System Identification Synchronization Research of Uncoupled Hyper-chaotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1