基于模糊最小-最大神经网络的作曲家音乐分类

P. Sadeghian, Casey Wilson, Stephen Goeddel, Aspen Olmsted
{"title":"基于模糊最小-最大神经网络的作曲家音乐分类","authors":"P. Sadeghian, Casey Wilson, Stephen Goeddel, Aspen Olmsted","doi":"10.23919/ICITST.2017.8356375","DOIUrl":null,"url":null,"abstract":"This work utilizes high-level musical features extracted from a large music database of Sonata pieces composed by Beethoven, Corelli, and Mozart, and assesses the accuracy of Fuzzy Min-Max (FMM) Neural Network and Enhanced Fuzzy Min-Max (EFMM) Neural Network classifiers in classifying the classical pieces by composer. Results of the assessment are provided and show different accuracies depending on the parameters used in the FMM and EFMM models. This study presents a novel approach to the classification of music by composer by presenting two classifiers, namely FMM and EFMM Neural Networks, capable of classifying classical music by composer.","PeriodicalId":440665,"journal":{"name":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of music by composer using fuzzy min-max neural networks\",\"authors\":\"P. Sadeghian, Casey Wilson, Stephen Goeddel, Aspen Olmsted\",\"doi\":\"10.23919/ICITST.2017.8356375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work utilizes high-level musical features extracted from a large music database of Sonata pieces composed by Beethoven, Corelli, and Mozart, and assesses the accuracy of Fuzzy Min-Max (FMM) Neural Network and Enhanced Fuzzy Min-Max (EFMM) Neural Network classifiers in classifying the classical pieces by composer. Results of the assessment are provided and show different accuracies depending on the parameters used in the FMM and EFMM models. This study presents a novel approach to the classification of music by composer by presenting two classifiers, namely FMM and EFMM Neural Networks, capable of classifying classical music by composer.\",\"PeriodicalId\":440665,\"journal\":{\"name\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICITST.2017.8356375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference for Internet Technology and Secured Transactions (ICITST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICITST.2017.8356375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

这项工作利用了从贝多芬、科雷利和莫扎特的奏鸣曲的大型音乐数据库中提取的高级音乐特征,并评估了模糊最小最小(FMM)神经网络和增强模糊最小最小(EFMM)神经网络分类器按作曲家对古典作品进行分类的准确性。根据FMM和EFMM模型中使用的参数不同,提供了评估结果,并显示出不同的精度。本研究提出了一种新的作曲家音乐分类方法,通过提出两个分类器,即FMM和EFMM神经网络,能够根据作曲家对古典音乐进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of music by composer using fuzzy min-max neural networks
This work utilizes high-level musical features extracted from a large music database of Sonata pieces composed by Beethoven, Corelli, and Mozart, and assesses the accuracy of Fuzzy Min-Max (FMM) Neural Network and Enhanced Fuzzy Min-Max (EFMM) Neural Network classifiers in classifying the classical pieces by composer. Results of the assessment are provided and show different accuracies depending on the parameters used in the FMM and EFMM models. This study presents a novel approach to the classification of music by composer by presenting two classifiers, namely FMM and EFMM Neural Networks, capable of classifying classical music by composer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the cost of cyber security in smart business Towards comparing programming paradigms Towards a security baseline for IaaS-cloud back-ends in Industry 4.0 Enhancing security in the cloud: When traceability meets access control New keyed chaotic neural network hash function based on sponge construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1