核细胞质运输过程的EM可视化

C.M. Feldherr, D. Akin
{"title":"核细胞质运输过程的EM可视化","authors":"C.M. Feldherr,&nbsp;D. Akin","doi":"10.1016/0892-0354(90)90014-J","DOIUrl":null,"url":null,"abstract":"<div><p>The nuclear envelope is strategically located between the nucleoplasm and cytoplasm, and, as such, can play a major role in controlling cellular activity by regulating the exchange of macromolecules between these two compartments. The nuclear pore complexes, which are located within circular areas formed by fusion of the inner and outer membranes of the envelope, represent the primary, if not the exclusive, exchange sites. Individual pores are able to function in both protein import and RNA efflux from the nucleus. Translocation of macromolecules occurs by either passive diffusion or facilitated transport through central channels within the pores. The functional size of the diffusion channel is approximately 9 to over 12 nm in diameter depending on the cell type. The width of the transport channel varies as a function of the number and effectiveness of the specific nuclear targeting signals contained within the permeant molecule. The maximum diameter of the channel can be over 26 nm. Nucleocytoplasmic exchanges can be regulated either by (1) differences in the properties of the transported molecule (molecular size and signal content) or (2) changes in the properties of the pore complexes, which can effect both diffusion and transport.</p></div>","PeriodicalId":77112,"journal":{"name":"Electron microscopy reviews","volume":"3 1","pages":"Pages 73-86"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0892-0354(90)90014-J","citationCount":"40","resultStr":"{\"title\":\"EM visualization of nucleocytoplasmic transport processes\",\"authors\":\"C.M. Feldherr,&nbsp;D. Akin\",\"doi\":\"10.1016/0892-0354(90)90014-J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nuclear envelope is strategically located between the nucleoplasm and cytoplasm, and, as such, can play a major role in controlling cellular activity by regulating the exchange of macromolecules between these two compartments. The nuclear pore complexes, which are located within circular areas formed by fusion of the inner and outer membranes of the envelope, represent the primary, if not the exclusive, exchange sites. Individual pores are able to function in both protein import and RNA efflux from the nucleus. Translocation of macromolecules occurs by either passive diffusion or facilitated transport through central channels within the pores. The functional size of the diffusion channel is approximately 9 to over 12 nm in diameter depending on the cell type. The width of the transport channel varies as a function of the number and effectiveness of the specific nuclear targeting signals contained within the permeant molecule. The maximum diameter of the channel can be over 26 nm. Nucleocytoplasmic exchanges can be regulated either by (1) differences in the properties of the transported molecule (molecular size and signal content) or (2) changes in the properties of the pore complexes, which can effect both diffusion and transport.</p></div>\",\"PeriodicalId\":77112,\"journal\":{\"name\":\"Electron microscopy reviews\",\"volume\":\"3 1\",\"pages\":\"Pages 73-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0892-0354(90)90014-J\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron microscopy reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/089203549090014J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron microscopy reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/089203549090014J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

核膜战略性地位于核质和细胞质之间,因此,通过调节这两个区室之间大分子的交换,可以在控制细胞活动中发挥重要作用。核孔复合物位于包膜内外膜融合形成的圆形区域内,即使不是唯一的交换位点,也是主要的交换位点。单个毛孔能够在细胞核的蛋白质输入和RNA流出中发挥作用。大分子的易位是通过被动扩散或通过孔内的中心通道促进运输发生的。根据细胞类型的不同,扩散通道的功能尺寸约为直径9至12纳米以上。传输通道的宽度随渗透分子中包含的特定核靶向信号的数量和有效性的函数而变化。通道的最大直径可以超过26纳米。核胞质交换可以通过(1)运输分子性质的差异(分子大小和信号含量)或(2)孔复合物性质的变化来调节,这可以影响扩散和运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EM visualization of nucleocytoplasmic transport processes

The nuclear envelope is strategically located between the nucleoplasm and cytoplasm, and, as such, can play a major role in controlling cellular activity by regulating the exchange of macromolecules between these two compartments. The nuclear pore complexes, which are located within circular areas formed by fusion of the inner and outer membranes of the envelope, represent the primary, if not the exclusive, exchange sites. Individual pores are able to function in both protein import and RNA efflux from the nucleus. Translocation of macromolecules occurs by either passive diffusion or facilitated transport through central channels within the pores. The functional size of the diffusion channel is approximately 9 to over 12 nm in diameter depending on the cell type. The width of the transport channel varies as a function of the number and effectiveness of the specific nuclear targeting signals contained within the permeant molecule. The maximum diameter of the channel can be over 26 nm. Nucleocytoplasmic exchanges can be regulated either by (1) differences in the properties of the transported molecule (molecular size and signal content) or (2) changes in the properties of the pore complexes, which can effect both diffusion and transport.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Formation and ultrastructure of somatic cell hybrids Image analysis of gap junction structures Abnormal collagen fibril structure as studied by electron microscopy Ultrastructure of alpha 2-macroglobulins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1