螺旋的A64可伸缩矢量扩展自适应调谐

Naruya Kitai, D. Takahashi, F. Franchetti, T. Katagiri, S. Ohshima, Toru Nagai
{"title":"螺旋的A64可伸缩矢量扩展自适应调谐","authors":"Naruya Kitai, D. Takahashi, F. Franchetti, T. Katagiri, S. Ohshima, Toru Nagai","doi":"10.1109/IPDPSW52791.2021.00117","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an auto-tuning (AT) system by adapting the A64 Scalable Vector Extension for SPIRAL to generate discrete Fourier transform (DFT) implementations. The performance of our method is evaluated using the Supercomputer \"Flow\" at Nagoya University. The A64 scalable vector extension applied DFT codes are up to 1.98 times faster than scalar DFT codes and up to 3.63 times higher in terms of the SIMD instruction rate. In addition, we obtain a factor of maximum speedup 2.32 by adapting proposed AT system for loop unrolling.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Auto-tuning with Adaptation of A64 Scalable Vector Extension for SPIRAL\",\"authors\":\"Naruya Kitai, D. Takahashi, F. Franchetti, T. Katagiri, S. Ohshima, Toru Nagai\",\"doi\":\"10.1109/IPDPSW52791.2021.00117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an auto-tuning (AT) system by adapting the A64 Scalable Vector Extension for SPIRAL to generate discrete Fourier transform (DFT) implementations. The performance of our method is evaluated using the Supercomputer \\\"Flow\\\" at Nagoya University. The A64 scalable vector extension applied DFT codes are up to 1.98 times faster than scalar DFT codes and up to 3.63 times higher in terms of the SIMD instruction rate. In addition, we obtain a factor of maximum speedup 2.32 by adapting proposed AT system for loop unrolling.\",\"PeriodicalId\":170832,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW52791.2021.00117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种自动调谐(AT)系统,该系统采用A64可伸缩向量扩展来生成离散傅里叶变换(DFT)实现。使用名古屋大学的超级计算机“Flow”对我们的方法进行了性能评估。A64可扩展向量扩展应用DFT码比标量DFT码快1.98倍,SIMD指令速率高3.63倍。此外,采用所提出的AT系统进行环展开,得到最大加速系数为2.32。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Auto-tuning with Adaptation of A64 Scalable Vector Extension for SPIRAL
In this paper, we propose an auto-tuning (AT) system by adapting the A64 Scalable Vector Extension for SPIRAL to generate discrete Fourier transform (DFT) implementations. The performance of our method is evaluated using the Supercomputer "Flow" at Nagoya University. The A64 scalable vector extension applied DFT codes are up to 1.98 times faster than scalar DFT codes and up to 3.63 times higher in terms of the SIMD instruction rate. In addition, we obtain a factor of maximum speedup 2.32 by adapting proposed AT system for loop unrolling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time-Division Multiplexing for FPGA Considering CNN Model Switch Time Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators On Data Parallelism Code Restructuring for HLS Targeting FPGAs Improving the MPI-IO Performance of Applications with Genetic Algorithm based Auto-tuning ScaDL 2021 Invited Speaker-3: AI for Social Impact: Results from multiagent reasoning and learning in the real world
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1