预测多顺反子microrna二级结构的并行算法

Dianwei Han, G. Tang, Jun Zhang
{"title":"预测多顺反子microrna二级结构的并行算法","authors":"Dianwei Han, G. Tang, Jun Zhang","doi":"10.1109/ICMLA.2010.80","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are newly discovered endogenous small non-coding RNAs (21-25nt) that target their complementary gene transcripts for degradation or translational repression. The biogenesis of a functional miRNA is largely dependent on the secondary structure of the miRNA precursor (pre-miRNA). Recently, it has been shown that miRNAs are present in the genome as the form of polycistronic transcriptional units in plants and animals. It will be important to design methods to predict such structures for miRNA discovery and its applications in gene silencing. In this paper, we propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. First, the master processor partitions the input sequence into subsequences and distributes them to the slave processors. The slave processors will then predict the secondary structure based on their individual task. Afterward, the slave processors will return their results to the master processor. Finally, the master processor will merge the partial structures from the slave processors into a whole candidate secondary structure. The optimal structure is obtained by sorting the candidate structures according to their scores. Our experimental results indicate that the actual speed-ups match the trend of theoretic values.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Parallel Algorithm for Predicting the Secondary Structure of Polycistronic MicroRNAs\",\"authors\":\"Dianwei Han, G. Tang, Jun Zhang\",\"doi\":\"10.1109/ICMLA.2010.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNAs) are newly discovered endogenous small non-coding RNAs (21-25nt) that target their complementary gene transcripts for degradation or translational repression. The biogenesis of a functional miRNA is largely dependent on the secondary structure of the miRNA precursor (pre-miRNA). Recently, it has been shown that miRNAs are present in the genome as the form of polycistronic transcriptional units in plants and animals. It will be important to design methods to predict such structures for miRNA discovery and its applications in gene silencing. In this paper, we propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. First, the master processor partitions the input sequence into subsequences and distributes them to the slave processors. The slave processors will then predict the secondary structure based on their individual task. Afterward, the slave processors will return their results to the master processor. Finally, the master processor will merge the partial structures from the slave processors into a whole candidate secondary structure. The optimal structure is obtained by sorting the candidate structures according to their scores. Our experimental results indicate that the actual speed-ups match the trend of theoretic values.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

MicroRNAs (miRNAs)是新发现的内源性小非编码rna (21-25nt),其靶向其互补基因转录物进行降解或翻译抑制。功能性miRNA的生物发生在很大程度上取决于miRNA前体(pre-miRNA)的二级结构。近年来,已有研究表明,mirna以多顺反子转录单位的形式存在于植物和动物基因组中。设计预测这些结构的方法对于miRNA的发现及其在基因沉默中的应用具有重要意义。本文提出了一种基于主从结构的并行算法,用于从输入序列中预测二级结构。首先,主处理器将输入序列划分为子序列,并将其分发给从处理器。然后,从处理器将根据各自的任务预测二级结构。然后,从处理器将它们的结果返回给主处理器。最后,主处理器将从处理器的部分结构合并为一个完整的候选二级结构。根据候选结构的得分对候选结构进行排序,得到最优结构。实验结果表明,实际加速速度与理论值的趋势相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Parallel Algorithm for Predicting the Secondary Structure of Polycistronic MicroRNAs
MicroRNAs (miRNAs) are newly discovered endogenous small non-coding RNAs (21-25nt) that target their complementary gene transcripts for degradation or translational repression. The biogenesis of a functional miRNA is largely dependent on the secondary structure of the miRNA precursor (pre-miRNA). Recently, it has been shown that miRNAs are present in the genome as the form of polycistronic transcriptional units in plants and animals. It will be important to design methods to predict such structures for miRNA discovery and its applications in gene silencing. In this paper, we propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. First, the master processor partitions the input sequence into subsequences and distributes them to the slave processors. The slave processors will then predict the secondary structure based on their individual task. Afterward, the slave processors will return their results to the master processor. Finally, the master processor will merge the partial structures from the slave processors into a whole candidate secondary structure. The optimal structure is obtained by sorting the candidate structures according to their scores. Our experimental results indicate that the actual speed-ups match the trend of theoretic values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1