基于因果关系理论的智能体建模

H. Ceballos, F. Cantú
{"title":"基于因果关系理论的智能体建模","authors":"H. Ceballos, F. Cantú","doi":"10.1109/MICAI.2007.25","DOIUrl":null,"url":null,"abstract":"We introduce causal agents, a methodology and agent architecture for modeling intelligent agents based on causality theory. We draw upon concepts from classical philosophy about metaphysical causes of existing entities for defining agents in terms of their formal, material, efficient and final causes and use computational mechanisms from Bayesian causal models for designing causal agents. Agent's intentions, interactions and performance are governed by their final causes. A semantic Bayesian causal model, which integrates a probabilistic causal model with a semantic layer, is used by agents for knowledge representation and inference. Agents are able to use semantic information from external stimuli (utterances, for example) which are mapped into the agent's causal model for reasoning about causal relationships with probabilistic methods. Our theory is being tested by an operational multiagents system implementation for managing research products.","PeriodicalId":296192,"journal":{"name":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modelling Intelligent Agents through Causality Theory\",\"authors\":\"H. Ceballos, F. Cantú\",\"doi\":\"10.1109/MICAI.2007.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce causal agents, a methodology and agent architecture for modeling intelligent agents based on causality theory. We draw upon concepts from classical philosophy about metaphysical causes of existing entities for defining agents in terms of their formal, material, efficient and final causes and use computational mechanisms from Bayesian causal models for designing causal agents. Agent's intentions, interactions and performance are governed by their final causes. A semantic Bayesian causal model, which integrates a probabilistic causal model with a semantic layer, is used by agents for knowledge representation and inference. Agents are able to use semantic information from external stimuli (utterances, for example) which are mapped into the agent's causal model for reasoning about causal relationships with probabilistic methods. Our theory is being tested by an operational multiagents system implementation for managing research products.\",\"PeriodicalId\":296192,\"journal\":{\"name\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2007.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2007.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们介绍了因果代理,一种基于因果关系理论的智能代理建模方法和代理架构。我们利用经典哲学中关于存在实体的形而上学原因的概念,从形式、物质、有效和最终原因的角度定义代理,并使用贝叶斯因果模型的计算机制来设计因果代理。代理人的意图、相互作用和表现受其最终原因支配。语义贝叶斯因果模型将概率因果模型与语义层相结合,用于智能体的知识表示和推理。智能体能够使用来自外部刺激(例如话语)的语义信息,这些信息被映射到智能体的因果模型中,用概率方法推理因果关系。我们的理论正在通过一个可操作的多代理系统实现来管理研究产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling Intelligent Agents through Causality Theory
We introduce causal agents, a methodology and agent architecture for modeling intelligent agents based on causality theory. We draw upon concepts from classical philosophy about metaphysical causes of existing entities for defining agents in terms of their formal, material, efficient and final causes and use computational mechanisms from Bayesian causal models for designing causal agents. Agent's intentions, interactions and performance are governed by their final causes. A semantic Bayesian causal model, which integrates a probabilistic causal model with a semantic layer, is used by agents for knowledge representation and inference. Agents are able to use semantic information from external stimuli (utterances, for example) which are mapped into the agent's causal model for reasoning about causal relationships with probabilistic methods. Our theory is being tested by an operational multiagents system implementation for managing research products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Tools to Time Series Forecasting Algorithm for Affective Pattern Recognition by Means of Use of First Initial Momentum Uncertain Reasoning in Multi-agent Ontology Mapping on the Semantic Web Segmentation and Extraction of Morphologic Features from Capillary Images An Intelligent Agent Using a Q-Learning Method to Allocate Replicated Data in a Distributed Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1