Steffen Linsenmayer, Ben W. Carabelli, Frank Dürr, Jonathan Falk, F. Allgöwer, K. Rothermel
{"title":"基于开槽传输分类模型的通信网络与控制系统集成","authors":"Steffen Linsenmayer, Ben W. Carabelli, Frank Dürr, Jonathan Falk, F. Allgöwer, K. Rothermel","doi":"10.1109/CCNC.2019.8651811","DOIUrl":null,"url":null,"abstract":"In this paper, we present a communication abstraction for Networked Control Systems that is characterized by a slotted transmission classification model. We discuss, how such a model can be implemented over local area networks by using IEEE Time Sensitive Networking methods. Furthermore, it is shown how asymptotic stability can be analyzed for linear systems that communicate over such a network. Based on the stability result, a controller design procedure is derived that takes the information captured in the network model into account. Further topics and related open problems that are implicated by the proposed model are briefly discussed as an outlook.","PeriodicalId":285899,"journal":{"name":"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Integration of Communication Networks and Control Systems Using a Slotted Transmission Classification Model\",\"authors\":\"Steffen Linsenmayer, Ben W. Carabelli, Frank Dürr, Jonathan Falk, F. Allgöwer, K. Rothermel\",\"doi\":\"10.1109/CCNC.2019.8651811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a communication abstraction for Networked Control Systems that is characterized by a slotted transmission classification model. We discuss, how such a model can be implemented over local area networks by using IEEE Time Sensitive Networking methods. Furthermore, it is shown how asymptotic stability can be analyzed for linear systems that communicate over such a network. Based on the stability result, a controller design procedure is derived that takes the information captured in the network model into account. Further topics and related open problems that are implicated by the proposed model are briefly discussed as an outlook.\",\"PeriodicalId\":285899,\"journal\":{\"name\":\"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC.2019.8651811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2019.8651811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of Communication Networks and Control Systems Using a Slotted Transmission Classification Model
In this paper, we present a communication abstraction for Networked Control Systems that is characterized by a slotted transmission classification model. We discuss, how such a model can be implemented over local area networks by using IEEE Time Sensitive Networking methods. Furthermore, it is shown how asymptotic stability can be analyzed for linear systems that communicate over such a network. Based on the stability result, a controller design procedure is derived that takes the information captured in the network model into account. Further topics and related open problems that are implicated by the proposed model are briefly discussed as an outlook.