{"title":"无界随机参数下的时间一致均值方差再保险投资问题:BSDE和唯一性","authors":"Bing Han, H. Y. Wong","doi":"10.2139/ssrn.3182387","DOIUrl":null,"url":null,"abstract":"To strike the best balance between insurance risk and profit, insurers transfer insurable risk through reinsurance and enhance yield by participating into the financial market. The long-term commitment of insurance contracts makes insurers necessary to consider time-consistent (TC) reinsurance-investment policies. Using the open-loop TC mean-variance (MV) reinsurance-investment framework, we investigate the equilibrium reinsurance-investment problems for the financial market with unbounded random coefficients or, specifically, an unbounded risk premium. We characterize the problem via a backward stochastic differential equation (BSDE) framework. An explicit solution to the equilibrium strategies is derived for a constant risk aversion under a general class of stochastic models, embracing the constant elasticity of variance (CEV) and Ornstein-Uhlenbeck (OU) processes as special cases. For state-dependent risk aversions, the problem is related to the existence of a solution to a quadratic BSDE with unbounded parameters. A semi-closed form solution is derived, up to the solution to a nonlinear partial differential equation. By examining properties of the equilibrium strategies numerically, we find that the reinsurance decision is greatly affected by the market situation under the state-dependent risk aversion case. We prove the uniqueness of equilibrium strategies for both cases.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-Consistent Mean-Variance Reinsurance-Investment Problems Under Unbounded Random Parameters: BSDE and Uniqueness\",\"authors\":\"Bing Han, H. Y. Wong\",\"doi\":\"10.2139/ssrn.3182387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To strike the best balance between insurance risk and profit, insurers transfer insurable risk through reinsurance and enhance yield by participating into the financial market. The long-term commitment of insurance contracts makes insurers necessary to consider time-consistent (TC) reinsurance-investment policies. Using the open-loop TC mean-variance (MV) reinsurance-investment framework, we investigate the equilibrium reinsurance-investment problems for the financial market with unbounded random coefficients or, specifically, an unbounded risk premium. We characterize the problem via a backward stochastic differential equation (BSDE) framework. An explicit solution to the equilibrium strategies is derived for a constant risk aversion under a general class of stochastic models, embracing the constant elasticity of variance (CEV) and Ornstein-Uhlenbeck (OU) processes as special cases. For state-dependent risk aversions, the problem is related to the existence of a solution to a quadratic BSDE with unbounded parameters. A semi-closed form solution is derived, up to the solution to a nonlinear partial differential equation. By examining properties of the equilibrium strategies numerically, we find that the reinsurance decision is greatly affected by the market situation under the state-dependent risk aversion case. We prove the uniqueness of equilibrium strategies for both cases.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3182387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3182387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-Consistent Mean-Variance Reinsurance-Investment Problems Under Unbounded Random Parameters: BSDE and Uniqueness
To strike the best balance between insurance risk and profit, insurers transfer insurable risk through reinsurance and enhance yield by participating into the financial market. The long-term commitment of insurance contracts makes insurers necessary to consider time-consistent (TC) reinsurance-investment policies. Using the open-loop TC mean-variance (MV) reinsurance-investment framework, we investigate the equilibrium reinsurance-investment problems for the financial market with unbounded random coefficients or, specifically, an unbounded risk premium. We characterize the problem via a backward stochastic differential equation (BSDE) framework. An explicit solution to the equilibrium strategies is derived for a constant risk aversion under a general class of stochastic models, embracing the constant elasticity of variance (CEV) and Ornstein-Uhlenbeck (OU) processes as special cases. For state-dependent risk aversions, the problem is related to the existence of a solution to a quadratic BSDE with unbounded parameters. A semi-closed form solution is derived, up to the solution to a nonlinear partial differential equation. By examining properties of the equilibrium strategies numerically, we find that the reinsurance decision is greatly affected by the market situation under the state-dependent risk aversion case. We prove the uniqueness of equilibrium strategies for both cases.