高斯混合粒子流概率假设密度滤波器

Mingjie Wang, H. Ji, Xiaolong Hu, Yongquan Zhang
{"title":"高斯混合粒子流概率假设密度滤波器","authors":"Mingjie Wang, H. Ji, Xiaolong Hu, Yongquan Zhang","doi":"10.23919/ICIF.2017.8009679","DOIUrl":null,"url":null,"abstract":"The probability hypothesis density (PHD) filter is a promising filter for multi-target tracking which propagates the posterior intensity of the multi-target state. In this paper, a Gaussian mixture particle flow PHD (GMPF-PHD) filter is proposed which uses a bank of particles to represent the Gaussian components in the Gaussian mixture PHD (GM-PHD) filter. Then a particle flow is implemented to migrate the particles to a more appropriate region in order to obtain a more accurate approximation of the posterior intensity. To verify the effectiveness of the algorithm, both linear and nonlinear multi-target tracking problem are designed, and the performance are compared with the classical approaches such as the GM-PHD filter, the Gaussian mixture particle PHD (GMP-PHD) filter, and the particle PHD filter. Simulation results show that the proposed filter can achieve a good performance with a reasonable computational cost.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian mixture particle flow probability hypothesis density filter\",\"authors\":\"Mingjie Wang, H. Ji, Xiaolong Hu, Yongquan Zhang\",\"doi\":\"10.23919/ICIF.2017.8009679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The probability hypothesis density (PHD) filter is a promising filter for multi-target tracking which propagates the posterior intensity of the multi-target state. In this paper, a Gaussian mixture particle flow PHD (GMPF-PHD) filter is proposed which uses a bank of particles to represent the Gaussian components in the Gaussian mixture PHD (GM-PHD) filter. Then a particle flow is implemented to migrate the particles to a more appropriate region in order to obtain a more accurate approximation of the posterior intensity. To verify the effectiveness of the algorithm, both linear and nonlinear multi-target tracking problem are designed, and the performance are compared with the classical approaches such as the GM-PHD filter, the Gaussian mixture particle PHD (GMP-PHD) filter, and the particle PHD filter. Simulation results show that the proposed filter can achieve a good performance with a reasonable computational cost.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率假设密度滤波器是一种很有前途的多目标跟踪滤波器,它传播多目标状态的后验强度。本文提出了一种高斯混合粒子流PHD (GMPF-PHD)滤波器,该滤波器使用一组粒子来表示高斯混合粒子流PHD (GM-PHD)滤波器中的高斯分量。然后实现粒子流,将粒子迁移到更合适的区域,以获得更精确的后验强度近似值。为了验证该算法的有效性,设计了线性和非线性多目标跟踪问题,并与经典的GM-PHD滤波、高斯混合粒子PHD (GMP-PHD)滤波和粒子PHD滤波进行了性能比较。仿真结果表明,该滤波器能在合理的计算成本下获得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gaussian mixture particle flow probability hypothesis density filter
The probability hypothesis density (PHD) filter is a promising filter for multi-target tracking which propagates the posterior intensity of the multi-target state. In this paper, a Gaussian mixture particle flow PHD (GMPF-PHD) filter is proposed which uses a bank of particles to represent the Gaussian components in the Gaussian mixture PHD (GM-PHD) filter. Then a particle flow is implemented to migrate the particles to a more appropriate region in order to obtain a more accurate approximation of the posterior intensity. To verify the effectiveness of the algorithm, both linear and nonlinear multi-target tracking problem are designed, and the performance are compared with the classical approaches such as the GM-PHD filter, the Gaussian mixture particle PHD (GMP-PHD) filter, and the particle PHD filter. Simulation results show that the proposed filter can achieve a good performance with a reasonable computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1