一种改进的k均值聚类算法及其在多码本/MLP联合神经网络语音识别中的应用

F. Wang, Qi-Jun Zhang
{"title":"一种改进的k均值聚类算法及其在多码本/MLP联合神经网络语音识别中的应用","authors":"F. Wang, Qi-Jun Zhang","doi":"10.1109/CCECE.1995.526597","DOIUrl":null,"url":null,"abstract":"Unsupervised learning algorithms play a central part in models of neural computation. K-means clustering algorithms, a type of unsupervised learning algorithms, have been used in many application areas. We propose an improved K-means algorithm for optimal partition which can achieve better variation equalization than standard binary splitting algorithms. The proposed clustering algorithm was applied to combined multi-codebook/MLP neural network speech recognition system to train the LPC based codebooks. It achieved smaller variation of the variances of clusters than that from the standard binary splitting algorithm.","PeriodicalId":158581,"journal":{"name":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An improved K-means clustering algorithm and application to combined multi-codebook/MLP neural network speech recognition\",\"authors\":\"F. Wang, Qi-Jun Zhang\",\"doi\":\"10.1109/CCECE.1995.526597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised learning algorithms play a central part in models of neural computation. K-means clustering algorithms, a type of unsupervised learning algorithms, have been used in many application areas. We propose an improved K-means algorithm for optimal partition which can achieve better variation equalization than standard binary splitting algorithms. The proposed clustering algorithm was applied to combined multi-codebook/MLP neural network speech recognition system to train the LPC based codebooks. It achieved smaller variation of the variances of clusters than that from the standard binary splitting algorithm.\",\"PeriodicalId\":158581,\"journal\":{\"name\":\"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1995.526597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1995.526597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

无监督学习算法在神经计算模型中起着核心作用。k -均值聚类算法是一种无监督学习算法,在许多应用领域都得到了应用。我们提出了一种改进的K-means最优分割算法,它比标准的二进制分割算法能更好地实现变异均衡。将所提出的聚类算法应用于组合多码本/MLP神经网络语音识别系统中,训练基于LPC的码本。与标准二值分割算法相比,该算法实现了簇方差的较小变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved K-means clustering algorithm and application to combined multi-codebook/MLP neural network speech recognition
Unsupervised learning algorithms play a central part in models of neural computation. K-means clustering algorithms, a type of unsupervised learning algorithms, have been used in many application areas. We propose an improved K-means algorithm for optimal partition which can achieve better variation equalization than standard binary splitting algorithms. The proposed clustering algorithm was applied to combined multi-codebook/MLP neural network speech recognition system to train the LPC based codebooks. It achieved smaller variation of the variances of clusters than that from the standard binary splitting algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical optimization for CDMA spreading sequences Intersystem interference modelling for land mobile systems A stable Ka band planar Gunn diode dielectric resonator oscillator (DRO) Performance of a broadband satellite communications system Dynamic range requirements for CDMA-based PCS power amplifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1