Monika Zbytniewska, Mike D. Rinderknecht, O. Lambercy, Marco Barnobi, Joke Raats, I. Lamers, P. Feys, J. Liepert, R. Gassert
{"title":"用于评估手部本体感觉、运动和感觉运动损伤的机器人装置的设计和表征","authors":"Monika Zbytniewska, Mike D. Rinderknecht, O. Lambercy, Marco Barnobi, Joke Raats, I. Lamers, P. Feys, J. Liepert, R. Gassert","doi":"10.1109/ICORR.2019.8779507","DOIUrl":null,"url":null,"abstract":"Hand function is often impaired after neurological injuries such as stroke. In order to design patient-specific rehabilitation, it is essential to quantitatively assess those deficits. Current clinical scores cannot provide the required level of detail, and most assessment devices have been developed for the proximal joints of the upper limb. This paper presents a new robotic platform for the assessment of proprioceptive, motor, and sensorimotor hand impairments. A detailed technical evaluation demonstrated the capabilities to render different haptic environments required for a comprehensive assessment battery, and showed that the device is suitable for human interaction due to its ergonomic design. A preliminary study on proprioceptive assessment using a gauge position matching task with one healthy, one stroke, and one multiple sclerosis subject showed that the robotic system is able to rapidly and sensitively quantify proprioceptive deficits, and has the potential to be integrated into the clinical settings.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design and Characterization of a Robotic Device for the Assessment of Hand Proprioceptive, Motor, and Sensorimotor Impairments\",\"authors\":\"Monika Zbytniewska, Mike D. Rinderknecht, O. Lambercy, Marco Barnobi, Joke Raats, I. Lamers, P. Feys, J. Liepert, R. Gassert\",\"doi\":\"10.1109/ICORR.2019.8779507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand function is often impaired after neurological injuries such as stroke. In order to design patient-specific rehabilitation, it is essential to quantitatively assess those deficits. Current clinical scores cannot provide the required level of detail, and most assessment devices have been developed for the proximal joints of the upper limb. This paper presents a new robotic platform for the assessment of proprioceptive, motor, and sensorimotor hand impairments. A detailed technical evaluation demonstrated the capabilities to render different haptic environments required for a comprehensive assessment battery, and showed that the device is suitable for human interaction due to its ergonomic design. A preliminary study on proprioceptive assessment using a gauge position matching task with one healthy, one stroke, and one multiple sclerosis subject showed that the robotic system is able to rapidly and sensitively quantify proprioceptive deficits, and has the potential to be integrated into the clinical settings.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Characterization of a Robotic Device for the Assessment of Hand Proprioceptive, Motor, and Sensorimotor Impairments
Hand function is often impaired after neurological injuries such as stroke. In order to design patient-specific rehabilitation, it is essential to quantitatively assess those deficits. Current clinical scores cannot provide the required level of detail, and most assessment devices have been developed for the proximal joints of the upper limb. This paper presents a new robotic platform for the assessment of proprioceptive, motor, and sensorimotor hand impairments. A detailed technical evaluation demonstrated the capabilities to render different haptic environments required for a comprehensive assessment battery, and showed that the device is suitable for human interaction due to its ergonomic design. A preliminary study on proprioceptive assessment using a gauge position matching task with one healthy, one stroke, and one multiple sclerosis subject showed that the robotic system is able to rapidly and sensitively quantify proprioceptive deficits, and has the potential to be integrated into the clinical settings.