含不规则形状硬夹杂物的软材料断裂

Yulin Cui, Yan Shi, C. Gao
{"title":"含不规则形状硬夹杂物的软材料断裂","authors":"Yulin Cui, Yan Shi, C. Gao","doi":"10.1109/SPAWDA48812.2019.9019233","DOIUrl":null,"url":null,"abstract":"The development of flexible electronics has aroused great interest in the fracture of soft materials. In general, fracture of brittle materials is mainly attributed to cracks, while hard inclusions in soft materials should be considered as dangerous factor, accordingly. However, most researches on soft materials are based on the theory of linear elastic fracture. In this paper, soft materials structures with different shapes of hard inclusions are fabricated by 3D printing method and subjected to tensile testing. The applicability of the theoretical model based on linear assumption is investigated via finite element and experimental analyses.","PeriodicalId":208819,"journal":{"name":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture of Soft Materials with Irregular Shape Hard Inclusions\",\"authors\":\"Yulin Cui, Yan Shi, C. Gao\",\"doi\":\"10.1109/SPAWDA48812.2019.9019233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of flexible electronics has aroused great interest in the fracture of soft materials. In general, fracture of brittle materials is mainly attributed to cracks, while hard inclusions in soft materials should be considered as dangerous factor, accordingly. However, most researches on soft materials are based on the theory of linear elastic fracture. In this paper, soft materials structures with different shapes of hard inclusions are fabricated by 3D printing method and subjected to tensile testing. The applicability of the theoretical model based on linear assumption is investigated via finite element and experimental analyses.\",\"PeriodicalId\":208819,\"journal\":{\"name\":\"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWDA48812.2019.9019233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA48812.2019.9019233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

柔性电子的发展引起了人们对软材料断裂的极大兴趣。一般来说,脆性材料的断裂主要是由裂纹引起的,而软质材料中的硬夹杂物也应被视为危险因素。然而,对软质材料的研究大多基于线弹性断裂理论。本文采用3D打印方法制备了具有不同形状硬夹杂物的软质材料结构,并进行了拉伸试验。通过有限元分析和实验分析,探讨了基于线性假设的理论模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fracture of Soft Materials with Irregular Shape Hard Inclusions
The development of flexible electronics has aroused great interest in the fracture of soft materials. In general, fracture of brittle materials is mainly attributed to cracks, while hard inclusions in soft materials should be considered as dangerous factor, accordingly. However, most researches on soft materials are based on the theory of linear elastic fracture. In this paper, soft materials structures with different shapes of hard inclusions are fabricated by 3D printing method and subjected to tensile testing. The applicability of the theoretical model based on linear assumption is investigated via finite element and experimental analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of two Local Uniform Temperature Changes on Electrical Behaviors of a Piezoelectric Semiconductor Fiber A Fast Approach for the Structural Design of Frame-Like Fbar Based on 2d Plate Theory A Novel Dual-Rotor Ultrasonic Motor Applied for Underwater Propulsion Study on High-Temperature Properties of 1-3 Piezoelectric Composites The Principle of Detection and Location of a Target in Layered Media Containing Solids by Snapshot TR-RTM Mixed Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1