四状态脑机接口的单次实验运动意象分类

C. Hema, M. Paulraj, S. Yaacob, A. H. Adom, R. Nagarajan
{"title":"四状态脑机接口的单次实验运动意象分类","authors":"C. Hema, M. Paulraj, S. Yaacob, A. H. Adom, R. Nagarajan","doi":"10.1109/CSPA.2009.5069184","DOIUrl":null,"url":null,"abstract":"Motor imagery is the mental simulation of a motor act which can be used to design brain machine interfaces [BMI]. A BMI is a digital communication system, which connects the human brain directly to an external device bypassing the peripheral nervous system and muscular system. Thus a BMI opens up possibilities for a new communication channel for people with neuromuscular disorders. The ability of an individual to control his EEG through imaginary motor tasks enables him to control devices. This paper presents a novel method for single trial motor imagery classification for a four state BMI to control a powered wheelchair. Recurrent Neural classifiers are used for classification of EEG signals during motor imagery for forward, stop, left and right hand movements. EEG is recorded using noninvasive scalp electrodes placed over the motor cortex. The performance of the proposed algorithm has an average classification efficiency of 96.15%. The proposed method can be used to translate the motor imagery signals into control signal using a four state BMI to control the directional movement of a powered wheelchair.","PeriodicalId":338469,"journal":{"name":"2009 5th International Colloquium on Signal Processing & Its Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Single trial motor imagery classification for a four state brain machine interface\",\"authors\":\"C. Hema, M. Paulraj, S. Yaacob, A. H. Adom, R. Nagarajan\",\"doi\":\"10.1109/CSPA.2009.5069184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor imagery is the mental simulation of a motor act which can be used to design brain machine interfaces [BMI]. A BMI is a digital communication system, which connects the human brain directly to an external device bypassing the peripheral nervous system and muscular system. Thus a BMI opens up possibilities for a new communication channel for people with neuromuscular disorders. The ability of an individual to control his EEG through imaginary motor tasks enables him to control devices. This paper presents a novel method for single trial motor imagery classification for a four state BMI to control a powered wheelchair. Recurrent Neural classifiers are used for classification of EEG signals during motor imagery for forward, stop, left and right hand movements. EEG is recorded using noninvasive scalp electrodes placed over the motor cortex. The performance of the proposed algorithm has an average classification efficiency of 96.15%. The proposed method can be used to translate the motor imagery signals into control signal using a four state BMI to control the directional movement of a powered wheelchair.\",\"PeriodicalId\":338469,\"journal\":{\"name\":\"2009 5th International Colloquium on Signal Processing & Its Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 5th International Colloquium on Signal Processing & Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2009.5069184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 5th International Colloquium on Signal Processing & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2009.5069184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

运动意象是对运动行为的心理模拟,可用于设计脑机接口。BMI是绕过周围神经系统和肌肉系统,将人脑直接连接到外部设备的数字通信系统。因此,BMI为神经肌肉疾病患者开辟了一种新的交流渠道。一个人通过想象的运动任务来控制他的脑电图的能力使他能够控制设备。提出了一种用于控制电动轮椅的四状态BMI单次试验运动意象分类的新方法。递归神经分类器用于对向前、停止、左手和右手运动图像中的脑电图信号进行分类。脑电图是用放置在运动皮层上的非侵入性头皮电极记录的。该算法的平均分类效率为96.15%。该方法可以利用四态BMI将运动图像信号转化为控制信号,从而控制轮椅的定向运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single trial motor imagery classification for a four state brain machine interface
Motor imagery is the mental simulation of a motor act which can be used to design brain machine interfaces [BMI]. A BMI is a digital communication system, which connects the human brain directly to an external device bypassing the peripheral nervous system and muscular system. Thus a BMI opens up possibilities for a new communication channel for people with neuromuscular disorders. The ability of an individual to control his EEG through imaginary motor tasks enables him to control devices. This paper presents a novel method for single trial motor imagery classification for a four state BMI to control a powered wheelchair. Recurrent Neural classifiers are used for classification of EEG signals during motor imagery for forward, stop, left and right hand movements. EEG is recorded using noninvasive scalp electrodes placed over the motor cortex. The performance of the proposed algorithm has an average classification efficiency of 96.15%. The proposed method can be used to translate the motor imagery signals into control signal using a four state BMI to control the directional movement of a powered wheelchair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dual Material Gate Silicon on Insulator (DMGSOI) - Design impact on linearity Application of PID controller in controlling refrigerator temperature Housekeeping robot: From concept to design Development of an active RFID communicator for automatic control applications Design of a vision system as a coordinate measurement sensor in a 2D gantry crane control system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1