双无人机辅助安全动态G2U通信

Hongyue Kang, W. Li, J. Misic, V. Mišić, Xiaolin Chang
{"title":"双无人机辅助安全动态G2U通信","authors":"Hongyue Kang, W. Li, J. Misic, V. Mišić, Xiaolin Chang","doi":"10.1109/ISCC55528.2022.9912939","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicle (UAV) communication is easily wiretapped by malignant nodes due to the broadcast nature of line-of-sight (LoS) wireless channels. To tackle this problem, this paper investigates a dual-UAV aided secure dynamic ground-to-UAV (G2U) communication system. By dynamic, we mean UAVs communicate with moving ground devices (GDs). Our objective is maximizing the sum secrecy rate by the joint optimization of UAV trajectory and GDs transmit power. To achieve it, we first formulate this nonconvex optimization problem as a Constrained Markov Decision Process (CMDP) under the constraints of UAV flying speed, initial and final locations, limited energy, and average transmit power. Then, a Deep Deterministic Policy Gradient (DDPG) based deep reinforcement learning algorithm is designed, named SC-TDPC, to learn the optimal transmit power and UAV trajectory. The experiment results demonstrate that, compared to other benchmark schemes, SC-TDPC can efficiently enhance the UAV communication security in terms of sum secrecy rate.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-UAV Aided Secure Dynamic G2U Communication\",\"authors\":\"Hongyue Kang, W. Li, J. Misic, V. Mišić, Xiaolin Chang\",\"doi\":\"10.1109/ISCC55528.2022.9912939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicle (UAV) communication is easily wiretapped by malignant nodes due to the broadcast nature of line-of-sight (LoS) wireless channels. To tackle this problem, this paper investigates a dual-UAV aided secure dynamic ground-to-UAV (G2U) communication system. By dynamic, we mean UAVs communicate with moving ground devices (GDs). Our objective is maximizing the sum secrecy rate by the joint optimization of UAV trajectory and GDs transmit power. To achieve it, we first formulate this nonconvex optimization problem as a Constrained Markov Decision Process (CMDP) under the constraints of UAV flying speed, initial and final locations, limited energy, and average transmit power. Then, a Deep Deterministic Policy Gradient (DDPG) based deep reinforcement learning algorithm is designed, named SC-TDPC, to learn the optimal transmit power and UAV trajectory. The experiment results demonstrate that, compared to other benchmark schemes, SC-TDPC can efficiently enhance the UAV communication security in terms of sum secrecy rate.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于视距(LoS)无线信道的广播性质,无人机通信很容易被恶性节点窃听。为了解决这一问题,本文研究了一种双无人机辅助安全动态地对无人机(G2U)通信系统。所谓动态,我们指的是无人机与移动地面设备(GDs)通信。我们的目标是通过联合优化UAV弹道和GDs发射功率,使总保密率最大化。为此,首先将该非凸优化问题表述为无人机飞行速度、初始和最终位置、有限能量和平均发射功率约束下的约束马尔可夫决策过程(CMDP)。然后,设计了一种基于深度确定性策略梯度(DDPG)的深度强化学习算法SC-TDPC,学习最优发射功率和无人机轨迹;实验结果表明,与其他基准方案相比,SC-TDPC在总保密率方面能有效提高无人机通信的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-UAV Aided Secure Dynamic G2U Communication
Unmanned aerial vehicle (UAV) communication is easily wiretapped by malignant nodes due to the broadcast nature of line-of-sight (LoS) wireless channels. To tackle this problem, this paper investigates a dual-UAV aided secure dynamic ground-to-UAV (G2U) communication system. By dynamic, we mean UAVs communicate with moving ground devices (GDs). Our objective is maximizing the sum secrecy rate by the joint optimization of UAV trajectory and GDs transmit power. To achieve it, we first formulate this nonconvex optimization problem as a Constrained Markov Decision Process (CMDP) under the constraints of UAV flying speed, initial and final locations, limited energy, and average transmit power. Then, a Deep Deterministic Policy Gradient (DDPG) based deep reinforcement learning algorithm is designed, named SC-TDPC, to learn the optimal transmit power and UAV trajectory. The experiment results demonstrate that, compared to other benchmark schemes, SC-TDPC can efficiently enhance the UAV communication security in terms of sum secrecy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1