用神经模糊模型压缩分段线性神经网络的可解释表示

L. Glass, Wael Hilali, O. Nelles
{"title":"用神经模糊模型压缩分段线性神经网络的可解释表示","authors":"L. Glass, Wael Hilali, O. Nelles","doi":"10.1109/SSCI50451.2021.9659976","DOIUrl":null,"url":null,"abstract":"We present Rectified Linear Unit based Local Linear Model Tree (ReLUMoT). A model that bridges the gap between Piecewise Linear Neural Networks (PLNN) and Local Model Networks (LMN) like those resulting from the LoLiMoT algorithm. Essentially, we perform the input space partitioning of LoLiMoT by training a PLNN and extracting its linear regions. These become the input space partitions of ReLUMoT. From the perspective of PLNNs our approach compresses and smoothens low-dimensional models, while making them interpretable. From the perspective of LoLiMoT, our approach replaces the incremental and heuristic input space partitioning scheme with gradient-based training of a neural network, which is considerably more flexible.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compressing Interpretable Representations of Piecewise Linear Neural Networks using Neuro-Fuzzy Models\",\"authors\":\"L. Glass, Wael Hilali, O. Nelles\",\"doi\":\"10.1109/SSCI50451.2021.9659976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Rectified Linear Unit based Local Linear Model Tree (ReLUMoT). A model that bridges the gap between Piecewise Linear Neural Networks (PLNN) and Local Model Networks (LMN) like those resulting from the LoLiMoT algorithm. Essentially, we perform the input space partitioning of LoLiMoT by training a PLNN and extracting its linear regions. These become the input space partitions of ReLUMoT. From the perspective of PLNNs our approach compresses and smoothens low-dimensional models, while making them interpretable. From the perspective of LoLiMoT, our approach replaces the incremental and heuristic input space partitioning scheme with gradient-based training of a neural network, which is considerably more flexible.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9659976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了基于整流线性单元的局部线性模型树(ReLUMoT)。一个弥合分段线性神经网络(PLNN)和局部模型网络(LMN)之间差距的模型,如LoLiMoT算法产生的那些。本质上,我们通过训练PLNN并提取其线性区域来执行LoLiMoT的输入空间划分。这些将成为ReLUMoT的输入空间分区。从plnn的角度来看,我们的方法压缩和平滑了低维模型,同时使它们具有可解释性。从LoLiMoT的角度来看,我们的方法用基于梯度的神经网络训练取代了增量和启发式的输入空间划分方案,这大大提高了灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressing Interpretable Representations of Piecewise Linear Neural Networks using Neuro-Fuzzy Models
We present Rectified Linear Unit based Local Linear Model Tree (ReLUMoT). A model that bridges the gap between Piecewise Linear Neural Networks (PLNN) and Local Model Networks (LMN) like those resulting from the LoLiMoT algorithm. Essentially, we perform the input space partitioning of LoLiMoT by training a PLNN and extracting its linear regions. These become the input space partitions of ReLUMoT. From the perspective of PLNNs our approach compresses and smoothens low-dimensional models, while making them interpretable. From the perspective of LoLiMoT, our approach replaces the incremental and heuristic input space partitioning scheme with gradient-based training of a neural network, which is considerably more flexible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1