{"title":"一个完全集成的多功能PTP节点","authors":"T. Muller, N. Kero","doi":"10.1109/ISPCS.2012.6336615","DOIUrl":null,"url":null,"abstract":"Today's market offers a wide variety of IEEE1588 devices implementing the Precision Time Protocol (PTP) in many different ways. This work presents a new approach of a fully integrated PTP node by focusing on three major attributes: (i) high precision in the range of a few nanoseconds, (ii) being as versatile as possible by implementing a vast part of the standard and (iii) keeping the costs of such a device as low as possible. To satisfy these goals, different ways of implementing such a device as a ready to use System-on-Chip solution are discussed. Advantages and draw-backs of several system architectures are outlined by describing all hard- and software components and finally presenting measurement results of a prototype implementation.","PeriodicalId":153925,"journal":{"name":"2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings","volume":"9 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A fully integrated versatile PTP node\",\"authors\":\"T. Muller, N. Kero\",\"doi\":\"10.1109/ISPCS.2012.6336615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today's market offers a wide variety of IEEE1588 devices implementing the Precision Time Protocol (PTP) in many different ways. This work presents a new approach of a fully integrated PTP node by focusing on three major attributes: (i) high precision in the range of a few nanoseconds, (ii) being as versatile as possible by implementing a vast part of the standard and (iii) keeping the costs of such a device as low as possible. To satisfy these goals, different ways of implementing such a device as a ready to use System-on-Chip solution are discussed. Advantages and draw-backs of several system architectures are outlined by describing all hard- and software components and finally presenting measurement results of a prototype implementation.\",\"PeriodicalId\":153925,\"journal\":{\"name\":\"2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings\",\"volume\":\"9 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2012.6336615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2012.6336615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

今天的市场提供了各种各样的IEEE1588设备,以许多不同的方式实现精确时间协议(PTP)。这项工作提出了一种完全集成PTP节点的新方法,重点关注三个主要属性:(i)在几纳秒范围内的高精度,(ii)通过实现大部分标准尽可能多用途,(iii)使这种设备的成本尽可能低。为了满足这些目标,本文讨论了实现这种器件的不同方法,使其成为可用的片上系统解决方案。通过描述所有硬件和软件组件,最后给出原型实现的测量结果,概述了几种系统架构的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fully integrated versatile PTP node
Today's market offers a wide variety of IEEE1588 devices implementing the Precision Time Protocol (PTP) in many different ways. This work presents a new approach of a fully integrated PTP node by focusing on three major attributes: (i) high precision in the range of a few nanoseconds, (ii) being as versatile as possible by implementing a vast part of the standard and (iii) keeping the costs of such a device as low as possible. To satisfy these goals, different ways of implementing such a device as a ready to use System-on-Chip solution are discussed. Advantages and draw-backs of several system architectures are outlined by describing all hard- and software components and finally presenting measurement results of a prototype implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IEEE 1588 for redundant ethernet networks Slave diversity: Using multiple paths to improve the accuracy of clock synchronization protocols Standard profile for use of IEEE Std 1588-2008 Precision Time Protocol (PTP) in power system applications: IEEE PES PSRC Working Group H7/Sub C7 members and guests Performance results of the first White Rabbit installation for CNGS time transfer An IEEE-1588 compatible RADclock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1