使用数据驱动和统计方法的降雨径流模型

Saadat Khan, Linda See
{"title":"使用数据驱动和统计方法的降雨径流模型","authors":"Saadat Khan, Linda See","doi":"10.1109/ICAST.2006.313789","DOIUrl":null,"url":null,"abstract":"This paper outlines the application of multiple linear regression and three different data-driven modeling techniques to river level forecasting for the river Ouse catchment in northern England. Lead times of 6 and 24 hours ahead were modelled. The results show that the data driven approaches generally outperformed the statistical approach and that M5 model trees have great potential for the development of transparent river level forecasting models.","PeriodicalId":433021,"journal":{"name":"2006 International Conference on Advances in Space Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Rainfall-Runoff Modelling using Data Driven and Statistical Methods\",\"authors\":\"Saadat Khan, Linda See\",\"doi\":\"10.1109/ICAST.2006.313789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the application of multiple linear regression and three different data-driven modeling techniques to river level forecasting for the river Ouse catchment in northern England. Lead times of 6 and 24 hours ahead were modelled. The results show that the data driven approaches generally outperformed the statistical approach and that M5 model trees have great potential for the development of transparent river level forecasting models.\",\"PeriodicalId\":433021,\"journal\":{\"name\":\"2006 International Conference on Advances in Space Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Advances in Space Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAST.2006.313789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advances in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAST.2006.313789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文概述了多元线性回归和三种不同的数据驱动建模技术在英格兰北部欧塞河流域水位预测中的应用。提前6小时和24小时的交货时间进行了建模。结果表明,数据驱动方法总体上优于统计方法,M5模型树在透明水位预报模型的开发中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rainfall-Runoff Modelling using Data Driven and Statistical Methods
This paper outlines the application of multiple linear regression and three different data-driven modeling techniques to river level forecasting for the river Ouse catchment in northern England. Lead times of 6 and 24 hours ahead were modelled. The results show that the data driven approaches generally outperformed the statistical approach and that M5 model trees have great potential for the development of transparent river level forecasting models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite-aided Search and Rescue (SAR) System Intelligent Transportation Systems in Transitional and Developing Countries Depleting Wetlands of Lower Sindh, Pakistan: A Spatio-Temporal Study through Satellite Remote Sensing Tsunami Generation and Propagation along the Coastal Zone of Makran and Karachi Solid Waste Management Planning using GIS and Remote Sensing Technologies Case Study Aurangabad City, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1