Matheus A. Cavalcante, Andreas Kurth, Fabian Schuiki, L. Benini
{"title":"基于非相干突发和基于相干缓存线的内存系统之间的开源桥接的设计","authors":"Matheus A. Cavalcante, Andreas Kurth, Fabian Schuiki, L. Benini","doi":"10.1145/3387902.3392631","DOIUrl":null,"url":null,"abstract":"In heterogeneous computer architectures, the serial part of an application is coupled with domain-specific accelerators that promise high computing throughput and efficiency across a wide range of applications. In such systems, the serial part of a program is executed on a Central Processing Unit (CPU) core optimized for single-thread performance, while parallel sections are offloaded to Programmable Manycore Accelerators (PMCAs). This heterogeneity requires CPU cores and PMCAs to share data in memory efficiently, although CPUs rely on a coherent memory system where data is transferred in cache lines, while PMCAs are based on non-coherent scratchpad memories where data is transferred in bursts by DMA engines. In this paper, we tackle the challenges and hardware complexity of bridging the gap from a non-coherent, burst-based memory hierarchy to a coherent, cache-line-based one. We design and implement an open-source hardware module that reaches 97% peak throughput over a wide range of realistic linear algebra kernels and is suited for a wide spectrum of memory architectures. Implemented in a state-of-the-art 22 nm FD-SOI technology, our module bridges up to 650 Gbps at 130 fJ/bit and has a complexity of less than 1 kGE/Gbps.","PeriodicalId":155089,"journal":{"name":"Proceedings of the 17th ACM International Conference on Computing Frontiers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design of an open-source bridge between non-coherent burst-based and coherent cache-line-based memory systems\",\"authors\":\"Matheus A. Cavalcante, Andreas Kurth, Fabian Schuiki, L. Benini\",\"doi\":\"10.1145/3387902.3392631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterogeneous computer architectures, the serial part of an application is coupled with domain-specific accelerators that promise high computing throughput and efficiency across a wide range of applications. In such systems, the serial part of a program is executed on a Central Processing Unit (CPU) core optimized for single-thread performance, while parallel sections are offloaded to Programmable Manycore Accelerators (PMCAs). This heterogeneity requires CPU cores and PMCAs to share data in memory efficiently, although CPUs rely on a coherent memory system where data is transferred in cache lines, while PMCAs are based on non-coherent scratchpad memories where data is transferred in bursts by DMA engines. In this paper, we tackle the challenges and hardware complexity of bridging the gap from a non-coherent, burst-based memory hierarchy to a coherent, cache-line-based one. We design and implement an open-source hardware module that reaches 97% peak throughput over a wide range of realistic linear algebra kernels and is suited for a wide spectrum of memory architectures. Implemented in a state-of-the-art 22 nm FD-SOI technology, our module bridges up to 650 Gbps at 130 fJ/bit and has a complexity of less than 1 kGE/Gbps.\",\"PeriodicalId\":155089,\"journal\":{\"name\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387902.3392631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387902.3392631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of an open-source bridge between non-coherent burst-based and coherent cache-line-based memory systems
In heterogeneous computer architectures, the serial part of an application is coupled with domain-specific accelerators that promise high computing throughput and efficiency across a wide range of applications. In such systems, the serial part of a program is executed on a Central Processing Unit (CPU) core optimized for single-thread performance, while parallel sections are offloaded to Programmable Manycore Accelerators (PMCAs). This heterogeneity requires CPU cores and PMCAs to share data in memory efficiently, although CPUs rely on a coherent memory system where data is transferred in cache lines, while PMCAs are based on non-coherent scratchpad memories where data is transferred in bursts by DMA engines. In this paper, we tackle the challenges and hardware complexity of bridging the gap from a non-coherent, burst-based memory hierarchy to a coherent, cache-line-based one. We design and implement an open-source hardware module that reaches 97% peak throughput over a wide range of realistic linear algebra kernels and is suited for a wide spectrum of memory architectures. Implemented in a state-of-the-art 22 nm FD-SOI technology, our module bridges up to 650 Gbps at 130 fJ/bit and has a complexity of less than 1 kGE/Gbps.