构造安全且硬件高效的可逆映射

E. Dubrova
{"title":"构造安全且硬件高效的可逆映射","authors":"E. Dubrova","doi":"10.1109/ISMVL.2016.15","DOIUrl":null,"url":null,"abstract":"Our society becomes increasingly dependent on wireless communications. The tremendous growth in the number and type of wirelessly connected devices in a combination with the dropping cost for performing cyberattacks create new challenges for assuring security of services and applications provided by the next generation of wireless communication networks. The situation is complicated even further by the fact that many end-point Internet of Things (IoT) devices have very limited resources for implementing security functionality. This paper addresses one of the aspects of this important, many-faceted problem - the design of hardware-efficient cryptographic primitives suitable for the protection of resource-constrained IoT devices. We focus on cryptographic primitives based on the invertible mappings of type {0,1,,2n-1} → {0,1,,2n-1}. In order to check if a given mapping is invertible or not, we generally need an exponential in n number of steps. In this paper, we derive a sufficient condition for invertibility which can be checked in O(n2N) time, where N is the size of representation of the largest function in the mapping. Our results can be used for constructing cryptographically secure invertible mappings which can be efficiently implemented in hardware.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Constructing Secure and Hardware-Efficient Invertible Mappings\",\"authors\":\"E. Dubrova\",\"doi\":\"10.1109/ISMVL.2016.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our society becomes increasingly dependent on wireless communications. The tremendous growth in the number and type of wirelessly connected devices in a combination with the dropping cost for performing cyberattacks create new challenges for assuring security of services and applications provided by the next generation of wireless communication networks. The situation is complicated even further by the fact that many end-point Internet of Things (IoT) devices have very limited resources for implementing security functionality. This paper addresses one of the aspects of this important, many-faceted problem - the design of hardware-efficient cryptographic primitives suitable for the protection of resource-constrained IoT devices. We focus on cryptographic primitives based on the invertible mappings of type {0,1,,2n-1} → {0,1,,2n-1}. In order to check if a given mapping is invertible or not, we generally need an exponential in n number of steps. In this paper, we derive a sufficient condition for invertibility which can be checked in O(n2N) time, where N is the size of representation of the largest function in the mapping. Our results can be used for constructing cryptographically secure invertible mappings which can be efficiently implemented in hardware.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们的社会越来越依赖于无线通信。无线连接设备的数量和类型的巨大增长,加上执行网络攻击的成本下降,为确保下一代无线通信网络提供的服务和应用程序的安全性带来了新的挑战。许多终端物联网(IoT)设备用于实现安全功能的资源非常有限,这一事实使情况更加复杂。本文解决了这个重要的多方面问题的一个方面-设计适合保护资源受限的物联网设备的硬件高效加密原语。我们主要研究基于类型为{0,1,,2n-1}→{0,1,,2n-1}的可逆映射的密码原语。为了检验一个给定的映射是否可逆,我们通常需要n步的指数。在本文中,我们得到了一个可以在O(n2N)时间内检验的可逆性的充分条件,其中N是映射中最大函数的表示大小。我们的结果可用于构造可在硬件上有效实现的加密安全可逆映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Constructing Secure and Hardware-Efficient Invertible Mappings
Our society becomes increasingly dependent on wireless communications. The tremendous growth in the number and type of wirelessly connected devices in a combination with the dropping cost for performing cyberattacks create new challenges for assuring security of services and applications provided by the next generation of wireless communication networks. The situation is complicated even further by the fact that many end-point Internet of Things (IoT) devices have very limited resources for implementing security functionality. This paper addresses one of the aspects of this important, many-faceted problem - the design of hardware-efficient cryptographic primitives suitable for the protection of resource-constrained IoT devices. We focus on cryptographic primitives based on the invertible mappings of type {0,1,,2n-1} → {0,1,,2n-1}. In order to check if a given mapping is invertible or not, we generally need an exponential in n number of steps. In this paper, we derive a sufficient condition for invertibility which can be checked in O(n2N) time, where N is the size of representation of the largest function in the mapping. Our results can be used for constructing cryptographically secure invertible mappings which can be efficiently implemented in hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logic Synthesis for Quantum State Generation Formal Design of Pipelined GF Arithmetic Circuits and Its Application to Cryptographic Processors Technology Mapping of Reversible Circuits to Clifford+T Quantum Circuits Design of Ratioless Ternary Inverter Using Graphene Barristor An Algebraic Approach to Reducing the Number of Variables of Incompletely Defined Discrete Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1