基于模糊密度的增量聚类算法

Sirisup Laohakiat, Photchanan Ratanajaipan, Leenhapat Navaravong, Rachanee Ungrangsi, Krissada Maleewong
{"title":"基于模糊密度的增量聚类算法","authors":"Sirisup Laohakiat, Photchanan Ratanajaipan, Leenhapat Navaravong, Rachanee Ungrangsi, Krissada Maleewong","doi":"10.1109/JCSSE.2018.8457385","DOIUrl":null,"url":null,"abstract":"This study presents a density-based incremental clustering algorithm which incorporates the concept of fuzzy set in clustering. Unlike other existing fuzzy clustering algorithms which are c-mean clustering where the number of clusters must be pre-defined, the proposed algorithm incorporates the concept of fuzzy set into density-based clustering where the number of clusters is not restricted. Moreover, the proposed algorithm uses incremental clustering usually employed in stream data clustering, leading to linear computation time, rather than quadratic computation time as in other density-based clustering. The proposed algorithm outperforms other existing density-based clustering algorithms in terms of both clustering results and computation time. As a result, the proposed algorithm can much efficiently process large data sets than other density-based clustering algorithms.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fuzzy Density-based Incremental Clustering Algorithm\",\"authors\":\"Sirisup Laohakiat, Photchanan Ratanajaipan, Leenhapat Navaravong, Rachanee Ungrangsi, Krissada Maleewong\",\"doi\":\"10.1109/JCSSE.2018.8457385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a density-based incremental clustering algorithm which incorporates the concept of fuzzy set in clustering. Unlike other existing fuzzy clustering algorithms which are c-mean clustering where the number of clusters must be pre-defined, the proposed algorithm incorporates the concept of fuzzy set into density-based clustering where the number of clusters is not restricted. Moreover, the proposed algorithm uses incremental clustering usually employed in stream data clustering, leading to linear computation time, rather than quadratic computation time as in other density-based clustering. The proposed algorithm outperforms other existing density-based clustering algorithms in terms of both clustering results and computation time. As a result, the proposed algorithm can much efficiently process large data sets than other density-based clustering algorithms.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于密度的增量聚类算法,该算法在聚类中引入了模糊集的概念。与现有的c均值聚类算法不同,该算法将模糊集的概念引入到基于密度的聚类中,不限制聚类的数量。此外,该算法采用了通常用于流数据聚类的增量聚类,导致线性计算时间,而不是像其他基于密度的聚类那样的二次计算时间。该算法在聚类结果和计算时间方面都优于现有的基于密度的聚类算法。结果表明,与其他基于密度的聚类算法相比,该算法可以更有效地处理大型数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fuzzy Density-based Incremental Clustering Algorithm
This study presents a density-based incremental clustering algorithm which incorporates the concept of fuzzy set in clustering. Unlike other existing fuzzy clustering algorithms which are c-mean clustering where the number of clusters must be pre-defined, the proposed algorithm incorporates the concept of fuzzy set into density-based clustering where the number of clusters is not restricted. Moreover, the proposed algorithm uses incremental clustering usually employed in stream data clustering, leading to linear computation time, rather than quadratic computation time as in other density-based clustering. The proposed algorithm outperforms other existing density-based clustering algorithms in terms of both clustering results and computation time. As a result, the proposed algorithm can much efficiently process large data sets than other density-based clustering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1