Hamoun Ghanbari, Marin Litoiu, P. Pawluk, C. Barna
{"title":"基于简单随机模型预测控制的云中副本放置","authors":"Hamoun Ghanbari, Marin Litoiu, P. Pawluk, C. Barna","doi":"10.1109/CLOUD.2014.21","DOIUrl":null,"url":null,"abstract":"This paper presents a model and an algorithm for optimal service placement (OSP) of a set of N-tier software systems, subject to dynamic changes in the workload, Service Level Agreements (SLA), and administrator preferences. The objective function models the resources' cost, the service level agreements and the trashing cost. The optimization algorithm is predictive: its allocation or reallocation decisions are based not only on the current metrics but also on predicted evolution of the system. The solution of the optimization, in each step, is a set some service replicas to be added or removed from the available hosts. These deployment changes are optimal with regards to overall objectives defined over time. In addition, the optimization considers the restrictions imposed on the number of possible service migrations at each time interval. We present experimental results that show the effectiveness of our approach.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Replica Placement in Cloud through Simple Stochastic Model Predictive Control\",\"authors\":\"Hamoun Ghanbari, Marin Litoiu, P. Pawluk, C. Barna\",\"doi\":\"10.1109/CLOUD.2014.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model and an algorithm for optimal service placement (OSP) of a set of N-tier software systems, subject to dynamic changes in the workload, Service Level Agreements (SLA), and administrator preferences. The objective function models the resources' cost, the service level agreements and the trashing cost. The optimization algorithm is predictive: its allocation or reallocation decisions are based not only on the current metrics but also on predicted evolution of the system. The solution of the optimization, in each step, is a set some service replicas to be added or removed from the available hosts. These deployment changes are optimal with regards to overall objectives defined over time. In addition, the optimization considers the restrictions imposed on the number of possible service migrations at each time interval. We present experimental results that show the effectiveness of our approach.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Replica Placement in Cloud through Simple Stochastic Model Predictive Control
This paper presents a model and an algorithm for optimal service placement (OSP) of a set of N-tier software systems, subject to dynamic changes in the workload, Service Level Agreements (SLA), and administrator preferences. The objective function models the resources' cost, the service level agreements and the trashing cost. The optimization algorithm is predictive: its allocation or reallocation decisions are based not only on the current metrics but also on predicted evolution of the system. The solution of the optimization, in each step, is a set some service replicas to be added or removed from the available hosts. These deployment changes are optimal with regards to overall objectives defined over time. In addition, the optimization considers the restrictions imposed on the number of possible service migrations at each time interval. We present experimental results that show the effectiveness of our approach.